MAR 16 1993 41 ENGINEERING DATA TRANSMITTAL

Page 1 of _/

1.EDT 140181

	_													
2. To: (Receiving Organization) 3. From: (Original 100 Area Remede								nization)	4. Relate	d EDT No.	:			
Distribution 100 Area Remed Investigation										N/	A			
		g./Dept./Di		. (00	6. Cog. Eng		7. Purchase Order No.:							
			a RI/ERE	/RK	J. M. Ay	res		<u></u>		<u>N/</u>				
	•	r Remarks:	007000		•				9. Equip.	-				
Iran	SMITT	ed for	Kelease			/	1-123		40 0	N/				
,						2303	,	1067	10. Syste	/N /NRrag				
11 0		Remarks:				(8) ·	En-	6189 101112132	12. Major					
11. K	sce i ver	Kenarks:			3		" Brico	<u> </u>	iz. major	N/	-			
					96		WILLE WO		13. Permi			ion No :		
					/2		60.60.	छ/	IS. PEIIII	N/		TOTAL ROSS		
					'	150		es ^{te} /	14. Requi			•		
						1,65	SOZEL81	113/2	, , , , , , , , , , , , , , , , , , ,	N/				
15.			after 15	DA	TA TRANSMITTE		COCALO		(F)	(G)	(H)	(1)		
(A)	<u> </u>			(C)	(D)		El Title on De	scription of Data		Reason	Origi-	Receiv-		
Item No.	(B)	Document/Dr	awing No.	Sheet No.	Rev. No.	1 '		smitted	Impact Level	for Trans-	nator Dispo-	er Dispo-		
						<u> </u>				mittal	sition	sition		
1	WHC-	-SD-EN-T	I-082	1	0	Data Validation Report 30 1/2 1 for the 100-HR-1								
	,								ŀ					
						Box	epoje	nit Vadose						
			V	1 A in		# 14 w	1	GHT				 		
					NEAR ST	1900	1 1							
					A THE LAND		C Upo Private							
16.						K	ĒΥ							
	npact Lev		4 Amenical		n for Transmittal	(G)		4 4		n (H) & (I)				
MRP 5.	, or 4 (se 43)	•	1. Approval 2. Release		st-Review			1. Approved 2. Approved w/co	mm o nt E	i. Reviewed i. Reviewed	w/comme	nt		
		45	3. Informati	on 6. Di	st. (Receipt Ackr			3. Disapproved w/	comment 6	6. Receipt a	cknowledg	ed		
(G)	(H)	17.					DISTRIBUTIO				(G) (H)		
Rea- son	Disp.	(J) Nam	e (K) S	ignature	(L) Date (M) M	ISIN	(J) Na	me (K) Signati	ure (L) Date	(M) MSIN	Re so	ا ،طوات ا		
1	1	Cog.Eng.	J. M. A	yres //	212 3/2/H	6-02	EDMC (2))	H6-08		3			
1	1	Cog. Mgr.	R. P. H	enckel /	MI IN HIS H	6-02	Central	Files (2)	L8-04					
1	1	QA .	G. S. C	arrigan	an Joneth	4216\3	ERC		H6-07					
		Safety			0 /	,								
		Env.												
		!												
18.		 	19.	•		20	0.001		21. DOE AL		if requi	red)		
J. M. A	yres	- 3/1/A	, : <u>3</u>			_ R.	E STATE OF	3/9/95	[] Approv	ed	ents			
Signatu	re of EDT	Date		ized Repres	sentative Date		gnizant/Proje		[] Disapp					

THIS PAGE INTENTIONALLY LEFT BLANK

expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

3Q

Impact Level

In

WHC-SD-EN-TI-OBZAND

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

DISCLM-4.CHP (1-91)

ACRONYMS

	%D	Percent difference
	AA	Atomic absorption
	BFB	Bromofluorobenzene
	BNA	Base/neutral and acid (equivalent to semi-volatiles)
	CCV	Continuing calibration verification
	CLP	Contract Laboratory Program
	CRDL	Contract required detection limit
	CRQL	Contract required quantitation limit
	DBC	Dibutylchlorendate
	DFTPP	Decafluorotriphenylphosphine
N	DQO	Data quality objectives
^	EPA	U.S. Environmental Protection Agency
○	GC/MS	Gas chromatography/mass spectrometry
S	GC	Gas chromatography
•	GFAA	Graphite furnace atomic absorption
WARE CO.	GPC	Gel permeation chromatography
	ICP	Inductively coupled plasma emission spectrometry
O.	ICS	ICP interference check sample
· **	ICV	Initial calibration verification
	IDL	Instrument detection limit
	MSA	Method of standard addition
	MS/MSD	Matrix spike/matrix spike duplicate
0	PCB	Polychlorinated biphenyl
Wirning	PEM	Performance evaluation mixture
	QA	Quality assurance
>>	QC	Quality control
	RF	Response factor
♂	RIC	Reconstructed ion chromatogram
	RPD	Relative percent difference
	RRF	Relative response factor
	RRT	Relative retention time
	RSD	Relative standard deviation
	RT	Retention time
	SDG	Sample delivery group
	SOW	Statement of work
	TAL	Target analyte list
	TCL	Target compound list
	TIC	Tentatively identified compounds
	TOC	Total organic carbon
	TOX	Total organic halides
	VOC	Volatile organic compounds

CONTENTS

	1.0	INTRODUCTION
	2.0	VOLATILE ORGANIC DATA VALIDATION
	3.0	SEMI-VOLATILE DATA VALIDATION
	4.0	PESTICIDE AND PCB DATA VALIDATION
	5.0	INORGANIC DATA VALIDATION
o ~	6.0	GROSS ALPHA AND GROSS BETA DETERMINATION DATA VALIDATION
n	7.0	ALPHA SPECTROSCOPY DATA VALIDATION
cità	8.0	GAMMA SPECTROSCOPY DATA VALIDATION 8-3
7	9.0	STRONTIUM-90 DETERMINATION DATA VALIDATION 9-3
<u> </u>	10.0	TECHNETIUM-99 DATA VALIDATION 10-3
<u>.</u>	11.0	CARBON-14 DETERMINATION DATA VALIDATION 11-3
- Table	12.0	TRITIUM DETERMINATION DATA VALIDATION 12-1
•	13.0	REFERENCES

1.0 INTRODUCTION

Data from the chemical analysis of twenty-three samples from the 100-HR-1 Operable Unit Vadose Borehole Remedial Investigation and their related quality assurance samples were reviewed and validated. The validation was performed to verify that data quality objectives were met for reported sample results and to support decisions regarding remedial actions performed on site. The samples were analyzed by Thermo-Analytic Laboratories (TMA) and Roy F. Weston Laboratories (WESTON) using U.S. Environmental Protection Agency (EPA) CLP protocols.

Sample analyses included:

- Volatile organics
- Semi-volatile organics
- Pesticide/PCB organics
- Inorganics.

SDG Package No.	Matrix	No. of Samples Analyzed	Parameters
B05WN8	Soil	9	VOC, BNA, Pest/PCB
B05WN8	Water	1	VOC, BNA, Pest/PCB
B05WN8	Soil	4	Inorganics
B05WP1	Soil	5	Inorganics
B05WP1	Water	1	Inorganics
B05WP5	Soil	2	VOC, BNA, Pest/PCB, Inorganics
B05WP5	Water	2	VOC, BNA, Pest/PCB, Inorganics
B05WV6	Soil	6	VOC, BNA, Pest/PCB, Inorganics
B05WV7	Soil	1	VOC, BNA, Pest/PCB, Inorganics
B05WW6	Soil	2	VOC, BNA, Pest/PCB, Inorganics

Twenty-two of the samples were analyzed for radiochemical parameters by Teledyne Isotopes and TMA. Analytical protocols specified in the Westinghouse Hanford Company Statement of Work for Nonradioactive Inorganic/Organic and Radiochemical Analytical Services were used. Sample analyses included the following:

- Gross alpha and gross beta determination
- Alpha spectroscopy
- Gamma spectroscopy
- strontium-90
- Technetium-99
- Carbon-14
- Tritium.

1 1

SDG Package No.	Matrix	No. of Samples Analyzed	Parameters
B05WN8	Soil	19	Radiochemical
B05WN8	Water	2	Radiochemical
B05WV7	soil	1	Radiochemical

All data except SDG No. B05WV7 were analyzed by TMA. The samples in SDG No. B05WV7 were analyzed by Weston and Teledyne Isotopes. Data quality was reviewed and analytical results validated using Westinghouse Hanford Company (Westinghouse Hanford) procedures and related EPA CLP protocols and guidelines. Data were qualified based upon their quality and the guidance provided by these sources. In instances where the two protocols differed, the Westinghouse Hanford guidelines were followed.

Samples numbers B05WW6 and B05WW7 were field duplicate samples analyzed by TMA. Sample numbers B05WV6 and B05WV7 were field splits analyzed by TMA and Weston, respectively. Sample results were compared for their accuracy using the sample guidelines followed for determining the RPD between a sample and its duplicate. All results fell within the required control limits for all organic and inorganic parameters with the exception of barium and potassium results for the field duplicate samples and chromium and lead for the field split samples.

The report is broken down into sections for each chemical and radiochemical analysis type. Each section addresses the data package completeness, holding time adherence, instrument calibration and tuning acceptability, blank results, accuracy, precision, system performance, as well as the compound identification and quantitation. In addition, each section has an overall assessment and summary for the data packages reviewed. Detailed backup information is provided to the reader by SDG and sample number. For each SDG, a matrix of chemical analysis per sample number is presented, as well as data qualification summaries.

The radiochemical data summary tables can be found at the end of Section 12.0.

Laboratory and data validation personnel added qualifiers to the reported data based on specified data quality objectives. The data reporting qualifiers are summarized as follows:

- U Indicates the analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for dilutions and moisture content. It should be noted that the sample quantitation limit may be higher or lower than the contract or method required detection limit, depending on instrumentation, matrix and concentration factors.
- J Indicates the analyte was analyzed for and detected.
 However, the associated value is considered to be an
 estimate due to identified QC deficiencies. Data
 flagged with a "J" may be usable for decision making
 purposes, depending upon the DQOs of the project.
 Laboratories qualify all reported organic detects below
 CRQL with a "J" per the CLP procedures.
- UJ Indicates the analyte was analyzed for and not detected. However, the associated detection limit is considered to be an estimate due to identified QC deficiencies. Detection limits flagged with a "UJ" may be usable for decision making purposes, depending upon the DQOs of the project.
- JN Indicates the analyte was analyzed for and there is presumptive evidence of that the compound is present. The concentration reported is considered an estimate which should be used for informational purposes only.
- E Indicates the analyte was analyzed for and detected at a concentration outside of the calibration range of the instrument. All reported concentrations flagged with an "E" are estimates which may contain significant error.
- R Indicates the analyte was analyzed for and due to a significant QC deficiency, the data is deemed unusable. Analytic results flagged "R" are invalid and provide no information as to whether or not the analyte is present.

The results of data validation performed for the 100-HR-1 Operable Unit Remedial Investigation are contained in the tables following each of the chapters in this report.

Several general quality trends which resulted in data qualification were observed. These included:

(3

• Minor blank contamination was noted in the volatile and semi-volatile results for several samples. The contaminants

were compounds commonly found in analytical laboratories and the corresponding sample results were flagged accordingly.

- The fourteen-day holding time requirement for volatiles analysis was exceeded for one sample. All associated results were flagged accordingly.
- The holding time from extraction to analysis was exceeded, though not grossly for samples in several BNA and pesticide/PCB data packages.
- Continuing calibration recovery results did not meet the QC limits for several compounds in the volatiles and semivolatiles analyses. The associated samples were flagged "J".
- The metal analysis showed repeated matrix spike accuracy problems, duplicate analyses precision results outside of QC, ICP serial dilution results outside of QC and analytical spike recoveries below the QC limit. Approximately one third of the metals results were flagged "J" due to these factors.
- Blank contamination noted in the inorganics analysis was generally from compounds found in analytical laboratories.
 Associated results were flagged accordingly.

1.2

- All gross alpha results were rejected due to low efficiency results determined in the calibrations.
- Alpha spectroscopy data were rejected in SDG No. B05WV7 due to low radiometric yields.

In general, the protocol-specific QA/QC requirements were met for the samples analyzed in this investigation with the exceptions noted above and discussed in detail in the chapters to follow. All requested analyses were performed.

With the exceptions noted above, the protocol-specific data quality objectives in terms of precision, accuracy, completeness, representativeness, and comparability have been met.

WEL	L AND SAMPLE	INFORMATIO	ON	SAMPLE LOCATION INFORMATION
SAMPLE LOCATION	SAMPLE NUMBER	MATRIX	DATE SAMPLED	VOLATILES
116-H-9	B05WN8 B05WN9 B05WP0	ននន	2/26/92 2/27/92 2/27/92	2-6 2-6 2-6
116-H-3	B05WP1 B05WP5 B05WP6 B05WP7	S S W W	3/04/92 3/05/92 3/05/92 3/05/92	2-6 2-11 2-12 2-12
116-H-7	B05WT8 B05WT9 B05WV1 B05WV2 B05WV3 B05WV4	s × s s s s	2/27/92 2/28/92 2/28/92 3/02/92 3/02/92 3/02/92	2-6 2-6 2-7 2-6 2-6 2-6
116-H-1	B05WV5 B05WV6 B05WV7 B05WV8 B05WV9 B05WW0 B05WW4	ល ល ល ល ល ល ល	3/09/92 3/09/92 3/09/92 3/09/92 3/10/92 3/11/92	2-11 2-11 2-19 2-11 2-11 2-11 2-11
116-H-2	B05WW5 B05WW6 B05WW7	នន	3/13/92 3/16/92 3/16/92	2-11 2-22 2-22

(h

THIS PAGE INTENTIONALLY LEFT BLANK

2.0 VOLATILE ORGANIC DATA VALIDATION

2.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B05WN8 B05WP5 B05WV6 B05WV7 B05WW6

2.2 HOLDING TIMES

....

-0

0

0

Analytical holding times were assessed to ascertain whether the Westinghouse holding time requirements for volatile organic analyses were met by the laboratory. The Westinghouse holding time requirements for volatile organic analyses are as follows: soil samples must be analyzed within 14 days of the date of sample collection; aqueous samples must be analyzed within seven days of the date of sample collection (if unpreserved); and all samples must be shipped on ice to the laboratory and stored at 4°C until analysis.

The 14 day holding time was exceeded, though not grossly, for sample number B05WT8 in SDG No. B05WN8.

All other analyses were performed within the required holding times.

2.3 INSTRUMENT CALIBRATION AND TUNING

Instrument calibration is performed to establish that the GC/MS instrument is capable of producing acceptable and reliable analytical data over a range of concentrations. The initial and continuing calibrations are to be performed according to CLP protocols. An initial multipoint calibration is performed prior to sample analysis to establish the linear range of the GC/MS instrument. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All initial calibration results were acceptable.

The %Ds for the continuing calibrations did not meet QC limits for the following compounds. All of the associated samples were flagged as estimates (J):

 Bromomethane, acetone and bromoform in sample numbers B05WP6 and B05WP7 in SDG No. B05WP5.

All other continuing calibration results were acceptable.

2.3.1 GC/MS Tuning/Instrument Performance Check

Tuning is performed to ensure that mass resolution, identification, and, to some degree, sensitivity of the GC/MS instrument have been established. When analyzing for volatile organics, instrument tuning is performed with BFB. Instrument tuning must be performed prior to the analysis of either standards or samples and must meet the criteria for acceptable GC/MS instrument tuning using BFB as outlined in Westinghouse Hanford (WHC 1991) and in EPA (EPA 1988a and 1988b) criteria.

The original data were checked for transcription and calculation errors to verify that tuning criteria were met. Prior to calibration and sample analysis, all tuning criteria were met.

All GC/MS tuning data is acceptable.

2.4 BLANKS

6

Method blank and field blank analyses are performed to determine the extent of laboratory or field contamination of samples. No contaminants should be present in the blanks. Analytical results for analytes present in any sample at less than 5 times the concentration of that analyte found in associated blanks should be qualified as non-detects; common laboratory contaminants present at less than 10 times the concentration of that analyte are qualified as non-detects.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for acetone:

- Sample numbers B05WN3, B05WN9, B05WP0, B05WP1, B05WT9, B05WV2, and B05WV4 in SDG No. B05WN8.
- Sample numbers B05WP5 and B05WV5 in SDG No. B05WP5.
- Sample numbers B05WV6, B05WV8, B05WV9, B05WW4 and B05WW5 in SDG No. B05WV6.
- Sample number B05WW6 in SDG No. B05WW6.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for methylene chloride:

Samples numbers B05WN8 and B05WP1 in SDG No. B05WN8.

- Sample numbers B05WP5 and B05WV5 in SDG No. B05WP5.
- All samples associated with SDG No. B05WV6.
- Sample number B05WV7 in SDG No. B05WV7.

All other laboratory blank results were acceptable.

2.5 ACCURACY

....

25

(2)

, i

Accuracy was assessed by evaluating the recoveries of stable isotopically labeled surrogate compounds added to all samples and blanks, and by the analysis of a representative sample which was spiked with a variety of volatile organic compounds.

2.5.1 Matrix Spike Recovery

Matrix spike compounds are added to a sample which is representative of the sample delivery group. Matrix spike analyses are performed in duplicate using five compounds and should be within the established quality control limits (EPA 1988b). The matrix spike analyses estimate how much the target compounds are interfered with, either positively or negatively, by the sample matrix.

All MS/MSD results were acceptable.

2.5.2 Surrogate Recovery

Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. When a surrogate compound recovery is out of the control window, all positively identified target compounds associated with the unacceptable surrogate recoveries are qualified as estimates (J). Undetected compounds are qualified as having an estimated detection limit (UJ).

All surrogate recovery results are acceptable.

2.6 PRECISION

Precision is expressed by the relative percent difference (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Field precision is measured by analyzing duplicate samples taken in the field.

All matrix spike/matrix spike duplicate RPD results were acceptable.

2.7 INTERNAL STANDARDS PERFORMANCE

111

-

Internal standard performance was assessed to determine whether abrupt changes in instrument response and sensitivity occurred that may have affected the reliability of the analytical data. The response (area or height) of the internal standards must not vary by more than 100 percent or -50 percent from the response of the internal standard that was used to calculate the upper and lower bounds. The upper and lower bounds define the range for acceptable internal standard response (area/height) for the sample analyses.

All internal standard recovery results were acceptable.

2.8 COMPOUND IDENTIFICATION AND QUANTITATION

The identity of detected compounds was confirmed to investigate the possibility of false positives. The confirmation of compound identification during the quality assurance review focuses on false positives because only mass spectra for positive identifications are submitted. However, target compounds that are reported as undetected are also evaluated to investigate the possibility of false negatives. Confirmation of possible false negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., relative response factors, detection limits, linearity, analytical recovery).

Compound quantitations and reported detection limits were recalculated for a minimum of 20 percent of the samples in each case to verify that they are accurate and are consistent with CLP requirements.

Below the CRQL, instrument precision becomes more variable as the instrument detection limit is approached. Therefore, the concentration of any compound that was detected below the CRQL was qualified as an estimate (J).

The reported results and quantitation limits were verified as correct in all cases.

2.9 OVERALL ASSESSMENT AND SUMMARY

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts

in baseline stability, retention time shifts, extraneous peaks, or sensitivity) were found during the quality assurance review.

In general, the volatile data presented in this report met the protocol-specified QA/QC requirements. Minor blank contamination was detected in the samples. The fourteen-day holding time requirement was not met for one sample. All associated results were qualified as estimates and flagged "J". Several compounds did not meet the QC limits for continuing calibrations; all associated samples were qualified as estimates. The data is considered valid and usable within the standard error associated with the method. All other results are considered to be acceptable and usable for all purposes.

. f**

S

WHC
SD
百百
ÎII
H-0
82
Rev
5
0

				_															
Project: WESTINGHOUSE-H	IANFOF	₹D																	
Laboratory: TMA																			
Case:	SDG: I	B05WN8																	
Sample Number		B05WN8		B05WN9		B05WP0		B05WP1		B05WT8	B05WT8			B05WV	2	B05WV3		B05WV	4
Location		116-H-9	9	116-H-9	9	116-H-9)	116-H-3	3	116-H-	7	116-H-7	7	116-H-	7	116-H-7	7	116-H-	7
Remarks																			
Sample Date		02/26/92		02/27/92	?	02/27/92	2	03/04/92		02/27/92	2	02/28/92		03/02/92	2	03/02/92	?	03/02/92	2
Analysis Date		03/11/92		03/11/92	2	03/11/92	?	03/10/92		03/13/92	2	03/11/92		03/11/92	2	03/11/92		03/11/92	2
Volatile Organic Compound	CRQL	Result	Q		Q		Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Chloromethane	10	11	U	10	U	10	U	10	U	11	UJ	11	حا	11	U	11	Ū	10	Ū.
Bromomethane	10	11	U	10	U	1	U		Ü	11	UJ	11	U	11	U	11	U	10	Ū
Vinyl Chloride	10	11	U	10	U	10	U		U	11	UJ	11	U	11	U	11	U	10	U
Chloroethane	10	11	V	10	U		U	10	U	11	UJ	11	U	11	U	11	U	10	U
Methylene Chloride	10	14	Ū	16	U	10	U		U	11	บั้	14	U	13	U	22	U	10	U
Acetone	10	19	U	35	U	20	U	33	U	11	UJ	31	U	41	U	36	U	23	U
Carbon Disulfide	10	5	U	5	Ü	5	U	5	Ū	5	UJ	5	U	5	U	5	U	5	ĺυ
1,1-Dichloroethene	10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U	5	U	5	U
1,1-Dichloroethane	10	5	U	5	Ü	5	U	5	Ų	5	UJ	5	U	5	Ū	5	Ų	5	U
1,2-Dichloroethene (total)	10	5	U	5	U	5	Ū	5	U	5	UJ	5	Ū	5	Ū	. 5	U	5	U
Chloroform	10	5	U	5	U	5	U	5	U	5	UJ	5	Ū	5	U	5	Ü	5	U
1,2-Dichloroethane	10	5	U	5	U	5	U	1 - 1	U	5	UJ	5	Ū	5	U	5	U	5	U
2-Butanone	10	11	U	10	U	10	U	10	U	11	UJ	11	U	11	U	11	U	10	U
1,1,1-Trichloroethane	10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U	5	U	5	U
Carbon Tetrachloride	10	5	U	5	U	5	U		U	5	UJ	5	U	5	U	5	U	5	U
Vinyl Acetate	10	11	U	10	U		υ		U		UJ	11	U	11	U	11	U	10	Ū
Bromodichloromethane	10	5	Ü	5	U	5	U	5	Ū,	5	UJ	5	Ū	5	U	5	U	5	U
1,2-Dichloropropane	10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U	5	Ü	5	U
cis-1,3-Dichloropropene	10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U	5	U	5	U
Trichloroethene	10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	Ū	5	٦	5	U
Dibromochloromethane	10	5	U	5	U	5	U	5	U	5	ับม	5	Ū	5	Ū	5	U	5	U
1,1,2-Trichloroethane	10	5	U	5	U	5	U	5	Ū	5	UJ	5	U	5	Ü	5	U	5	U
Benzene	10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U	5	Ü	5	U
trans-1,3-Dichloropropene	10	5	U	5	Ū	5	U	5	U	5	บัง	5	U	5	Ū	5	Ū	5	U
Bromoform	10	5	U	5	U	5	Ū	5	Ū	5	UJ	5	U	5	U	5	حا	5	U
4-Methyl-2-pentanone	10	11	Ū	10	U	10	U	10	U	11	UJ	11	U	11	U	11	ΰ	10	U
2-Hexanone	10	11	U	10	Ü	10	U	10	Ü	11	UJ	11	U	11	U	11	υ	10	U
Tetrachloroethene	10	5	U	5	U	5	Ų	5	U	5	UJ	5	U	5	U	5	Ū	5	Ū
1,1,2,2-Tetrachloroethane	10	5	U	5	U	5	U	5	Ū	5	บป	5	Ū	5	Ū		U	5	U
Toluene	10	5	Ū	3	U	5	U	2	U	2	UJ	49		5	Ū	3	J	5	U
Chlorobenzene	10	5	U	5	U	5	U	5	Ū	5	บม	5	U	5	U	5	U	5	U
Ethylbenzene	10	5	U	5	U	5	U	5	U	5	UJ	5	Ū	5	U	5	U	5	U
Styrene	. 10	5	U	5	U	5	U	5	U	5	UJ	5	U	5	U	5	U	5	U
Xytene (total)	10	5	U	5	U	5	U	5	U	5	UJ	5	Ū	5	U	5	Ū	5	U

2

Project: WESTINGHOUSE-F	IANFOR	RD .		1																	
Laboratory: TMA]																	
Case:	SDG: E	05WN8]																	
Sample Number		B05WV																			
Location		116-H-	<u> </u>	ļ		<u> </u>		<u> </u>				<u> </u>									
Remarks Sample Date	· · · · · · · · · · · · · · · · · · ·	EB 02/28/92		ļ						ļ											
Analysis Date		03/06/92				ļ		 		ļ. <u></u>		ļ									
Volatile Organic Compound	CBOL		TO-	Result	Q	Recult	10	Result	76	Result	Q	Result	Q	Result	<u> </u>	Docult	T Q -	Result	10	Result	דם -
Chloromethane	10	10	Ü	Trootic	 	ricadit	-	1103011	Q	TIOSUR	-	resuit	· ·	1 105UIL	<u> </u>	nesuit	-	nesuit	Q.	nesuit	14
Bromomethane	10		Ū		 	 	╁				1					 	 		├		+
Vinyl Chloride	10		Ū	1				 			 						├		\vdash		
Chloroethane	10	10	U		1	1	\top	<u> </u>	1										1		+
Methylene Chloride	10	10	U				1	1			 					<u> </u>			<u> </u>		
Acetone	10	3	J				T												1		1
Carbon Disulfide	10	5	Ū				1	1			1			· · · · · · · · · · · · · · · · · · ·							\Box
1,1-Dichloroethene	10	5	U		T	1	T		1	<u> </u>				*****					\vdash		1-
1,1-Dichloroethane	10	5	U			·	1				1								1		${\dagger}$
1,2-Dichioroethene (total)	10	5	U				1														1
Chloroform	10	5	U		1		1				1						1				\vdash
1,2-Dichloroethane	10	5	U																		11
2-Butanone	10	10	U								1						Ì				\Box
1,1,1-Trichloroethane	10	I	U																		
Carbon Tetrachloride	10	5	U		Π		Π				1	1					1				\Box
Bromodichloromethane	10	10					П			l							1				
1,2-Dichloropropane	10	5	U														Ì				\Box
cis-1,3-Dichloropropene	10	5	U								I						 				
Trichloroethene	10		U		Ī																\Box
Dibromochloromethane	10		U																		П
1,1,2-Trichloroethane	10		Ü																		П
Benzene	10	5	U				Т		1							· · · · · · · · · · · · · · · · · · ·	İ		<u> </u>		\Box
trans-1,3-Dichloropropene	10		U			1															
Bromoform	10		U								ļ					<u> </u>					
4-Methyl-2-pentanone	10		U				1			i		<u> </u>									
2-Hexanone	10	10	U					T	<u> </u>												\Box
Tetrachloroethene	10		U		Ī.,																
1,1,2,2-Tetrachloroethane	10		U															,			\Box
Toluene	10		J					1			T										
Chlorobenzene	10	5	U				Π											<u> </u>			\Box
Ethylbenzene	10		U																		
Styrene	10		U																		
Xylene (total)	10	5	U	L		<u> </u>		<u> </u>													

HOLDING TIME SUMMARY

SDG: B05WN8	REVIEWER:	MY		DATE: 10/26/	92	PAGE_1_OF_1_					
COMMENTS:											
FIELD SAMPLE ID	ANALYSIS DATE DATE DATE ID TYPE SAMPLED PREPARED AN				PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER				
B05WT8	VOA	2/27/92		3/13/92		14	1				
			:								
							,				
			•								
			·								
		<u> </u>					<u> </u>				
							,				

2

ή

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WN8 REVIEWER: MY					E: 10/26/	92		PAGE_1_OF_1_			
COMMENTS:				-							
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER		
VBLK0310R3	Methylene chloride	7			ug/kg	35	70	B05WP1	U		
VBLK0310R3	Acetone	26			ug/kg	130	260	B05WP1	U		
VBLK0311R	Methylene chloride	3	J		ug/kg	15	30	B05WN8	U		
VBLK0311R	Acetone	15			ug/kg	75	150	B05WN9, B05WP0, B05WT9, B05WV2, B05WN3, B05WV4	U		
,											

DATA QUALIFICATION SUMMARY

		<u> </u>	
SDG: B05WN8	REVIEWER: MY	DATE: 10/26/92	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
All VOA compounds	J	B05WT8	Holding time
Methylene chloride	U	B05WP1 and B05WN8	Lab blank contamination
Acetone	U	B05WN9, B05WP0, B05WT9, B05WV2, B05WN3, B05WV1 and B05WP1	Lab blank contamination
			

17

Destruction of the	IANIFO	50		1																	
Project: WESTINGHOUSE-I	HANFU	ער		4																	
Laboratory: TMA	050-6	NOCIALIDO.		_																	
	SDG: E	05WP5		DOSIAR /S						Y		 		 				T		,	1
Sample Number		B05WP5		B05WV5		<u> </u>		<u> </u>		<u> </u>											[
Location		116-H-	3	116-H-2				ļ										ļ			
Remarks						ļ										<u> </u>					
Sample Date		3/05/92		3/09/92								ļ						ļ			
Analysis Date		3/12/92	16	3/13/92			1	<u>.</u>			1 =			<u> </u>	٠	<u></u>		<u></u>	-		 -
			Q		Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Chloromethane	10	10			U		ļ	<u> </u>			ļ	ļ			ļ		Ļ_		<u> </u>	<u> </u>	1_
Bromomethane	10	10		11			<u> </u>		<u> </u>		<u> </u>					<u> </u>	ļ	ļ	<u> </u>		\bot
Vinyl Chloride	10		U		ט				<u> </u>		<u> </u>	<u> </u>					<u> </u>				\perp
Chloroethane	10	10			U	<u> </u>		<u> </u>	L			ļ. <u>.</u> .									
Methylene Chloride	10		U		U																\perp
Acetone	10	10			U					<u> </u>		<u> </u>									
Carbon Disulfide	10		U		U										l						
1,1-Dichloroethene	10	5			U												Ϊ				
1,1-Dichloroethane	10		U	5													Ι				
1,2-Dichloroethene (total)	10		Ü		U	Ī											\Box				
Chloroform	10		U	5																	\Box
1,2-Dichloroethane	10	5	U	5	Ų		1		T								Ι.				
2-Butanone	10	10	U	11	U								П				Ţ		l		
1,1,1-Trichloroethane	10		Ū	5	Ü																\sqcap
Carbon Tetrachloride	10	5	TU	5	Ü		T		1			1	1				1		1		
Vinyl Acetate	10	10	U	11			1	1			1									i	
Bromodichloromethane	10	5	U	5	U																\Box
1,2-Dichloropropane	10		U	5			1		1												\sqcap
cis-1,3-Dichloropropene	10	5	U	5	Ū		1							·					1		
Trichloroethene	10	5	U	5	Ū	İ			\Box		1										\Box
Dibromochloromethane	10		U	5	U				1												\Box
1,1,2-Trichloroethane	10		Ū		U				_												\Box
Benzene	10		ΙŪΤ		Ū		 		 			 	 	l	1	ļ —	1		1		\top
trans-1,3-Dichloropropene	10		Ū	5	Ų		1		 	 	1	1		 	 				1-		+
Bromoform	10	5	Ū	5	Ų	 	1	†	 	 	1	1	 	 	 		1-	1			1-1
4-Methyl-2-pentanone	10	10			Ū		┼		 	 	-		 			<u> </u>	┼╌	 	i -	-	1-
2-Hexanone	10		ΙŪ		Ū	 	+	 		· · · · · ·	-			-	 		 	 	┼─	 	1-
Tetrachloroethene	10		Ü	5	Ū	 	┼─		├			1	 			 	┤	·····	+		\vdash
1,1,2,2-Tetrachloroethane	10		Ü		Ŭ	 	+-	 	 		 	 	-	 		 	+-	 	+	 	1
Toluene	10	7	۲	14	-	 	\vdash	 	-		1	 	-			 	-	 	 -		╁╌┤
Chlorobenzene	10		U		U	 	1-	 	 		 	 	-	 	 	 	-	 	\vdash	 	1-
Ethylbenzene	10		Ü	5	U		+		├─		\vdash	 	-	 		 	┼	 	-	 	1
Styrene	. 10		Ü	5	Ü	 	┼		├		┼		-		├	 	-	 	-		+
Xylene (total)	10		Ü	5	U	 	-	 -	├	 	 	 	├			 	+-	 	+	 	+
Valence (rorar)	10		٧.	<u>3</u>	<u>''</u>	L	ــــــــــــــــــــــــــــــــــــ		<u></u> _	l	1	<u></u>	Щ.	L	<u> </u>	<u> </u>	<u>. </u>	<u> </u>	<u> </u>	L	لـــــــــــــــــــــــــــــــــــــ

Project: WESTINGHOUSE-I	HANFO	RD CIF		1																	
Laboratory: TMA				1																	
Case:	SDG: E	305WP5																			
Sample Number		B05WP6		B05WP7												}					
Location		116-H-	3	116-H-3	3												-				•
Remarks		ТВ		EB																	
Sample Date		3/05/92		3/05/92																	
Analysis Date	LABAL	3/13/92	T.A.	3/13/92			тж-					<u> </u>		<u> </u>				<u> </u>			
Volatile Organic Compound			Q			Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Chloromethane	10	10	1		U		<u> </u>		ļ		<u> </u>		ļ		<u> </u>	<u> </u>	ļ		<u> </u>		_
Bromomethane	10		υJ	10		ļ	丄		<u> </u>		<u> </u>	<u> </u>	<u> </u>				<u> </u>				
Vinyl Chloride	10	10			حا				<u> </u>		<u></u>	ļ	L	ļ		į					
Chloroethane	10	10	U		5												l				
Methylene Chloride	10	10		7	J																Π
Acetone	10		IJ	10												•				**	
Carbon Disulfide	10	5	U	5	ŭ		T -		Ī		1	1	Ī			ĺ			1		Τ
1,1-Dichloroethene	10	5	U	5	V	I	Π		Ī				T			ŀ			1		1
1,1-Dichloroethane	10	5	U	5	Ū		Γ		i	l	1	T	Г			i .			1		╁
1,2-Dichloroethene (total)	10		Ų	5		1	Г		i –	<u> </u>	1	1		<u> </u>	T		T	 			1
Chloroform	10		J	2			一		<u> </u>		1	 	t	<u> </u>			 		1		┿
1,2-Dichloroethane	10		Ū	5		 -		 	 		+	 	 	 -	_		├──		t		t
2-Butanone	10	10		10		 	┢		┢		╁	 	\vdash				\vdash	 	┼		╁
1,1,1-Trichloroethane	10		Ü	5		 	├	 	 		╫		╁──		 		├─		╫		┿
Carbon Tetrachioride	10		U		Ü		┢				+-	 	├		-		-	-	+		╁
Vinyl Acetate	10	10	1		U	 	┢	-	 		╂	ļ	┢	 	-		├	 	┼		
Bromodichloromethane	10		Ü	5			╀┈	 	├		-	<u> </u>	 		ļ	<u> </u>	 		+		╁
	10					ļ	 		├	ļ	 	ļ <u>. </u>	-		 		<u> </u>	ļ <u></u> .	 		
1,2-Dichloropropane			U	5			<u> </u>		 		 		-		1		┡	<u> </u>	ļ	<u> </u>	↓_
cis-1,3-Dichioropropene	10		U		U		╙		<u> </u>		 	ļ	<u> </u>		<u> </u>		<u> </u>	ļ	╄		\bot
Trichloroethene	10		U	1	Ü		<u> </u>		<u> </u>		<u> </u>	ļ			<u> </u>		<u> </u>		<u> </u>		╙
Dibromochloromethane	10		U		Ü		<u> </u>		<u> </u>			<u> </u>			ļ	<u> </u>	L			<u> </u>	
1,1,2-Trichloroethane	10		U		٦								L		<u> </u>		L				
Benzene	10		U		U										l		l				
trans-1,3-Dichloropropene	10	5	U	5	U						1										Π
Bromoform	10	5	ÜJ	5	IJ		1	1		1	1	Î	Π	T		<u> </u>					1
4-Methyl-2-pentanone	10	10	U	10	U		1			<u> </u>	1	<u> </u>	T				 	· .			T
2-Hexanone	10	10			Ū		 	 	 	 	 	 	1	 	1		\vdash	 	 		1
Tetrachloroethene	10		Ū	·	Ü		\vdash		 	 	T	 	Ι	<u> </u>	 				+		
1,1,2,2-Tetrachloroethane	10		Ū	5			\vdash	 	 		+-	 			 		\vdash	 	 		t
Toluene	10	1	J	1	_	-	\vdash	 	 		+	 	├		 	 	 	 	1-		
Chlorobenzene	10		U	5	T.		╫	 	╁	 	╂	 	├			 	 		╫		┼─
Ethylbenzene	10		Ü	5		 	┢	 	┢	ļ	┼	 	├		-		┼	 	╫		┼
						-	-	-	├—	 	-	 	\vdash	 	-	 	ļ	ļ	┼—		┼
Styrene	10		U	5		 	├		<u> </u>				-		 	ļ	 		 		\vdash
Xylene (total)	10	5	U	5	U	1	ļ.,	<u></u>		L	<u>L</u>	l		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ا		<u>[</u>

CALIBRATION DATA SUMMARY

	1		1											
SDG: B05WP5	REVIEWER: MY	<u>- </u>	DATE: 2/0	3/93	PAGE_1_0	OF_1_								
COMMENTS:			····											
CALIB. TYPE:	INITIAL	CONTINUING	INSTRUMENT:											
CALIB. DATE	COMPOUND		RF	RSD/%D/%R	SAMPLES AFFECTED	QUALIFIER								
3/13/92	Bromomethane		.538	%D 30.6	B05WP6,B05WP7	J								
3/13/92	Acetone		.272	%D 29.7	B05WP6,B05WP7	1								
3/13/92	Bromoform		.307	%D 25.6	B05WP6,B05WP7	J ,								
					-									
						·								

BLANK AND SAMPLE DATA SUMMARY	
DATE: 2/03/93	PAGE_1_OF_1

WHC-SD-EN-TI-082,
Rev.
0

SDG:B05WP5	REVIEWER: MY		DAT	E: 2/03/93	3	PAGE_1_OF_1_					
COMMENTS:				1					· · · · · · · · · · · · · · · · · · ·		
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER		
VBLK0312R	Methylene chloride	6			ug/kg	30	60	B05WP5,B05WV5	U		
VBLK0312R	Acetone	8			ug/kg	40	80	B05WP5,B05WV5	U		
		:									
	· · · · · · · · · · · · · · · · · · ·										
· · · · · · · · · · · · · · · · · · ·									1		
-											
		:									

DATA QUALIFICATION SUMMARY

SDG: B05WP5	REVIEWER: MY	DATE: 2/03/93	PAGE_1_OF_1_
COMMENTS:		J	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Bromomethane	J	B05WP6,B05WP7	Calibration
Acetone	J	B05WP6,B05WP7	Calibration
Bromoform	J	B05WP6,B05WP7	Calibration
Methylene chloride	U	B05WP5,B05WV5	Blank Contamination
Acetone	U	B05WP59,B05WV5	Blank Contamiantion
· · · · · · · · · · · · · · · · · · ·			

HW
$\vec{\Omega}$
GS
T-I
Ħ
80
,
Re
eν.
0

Project: WESTINGHOUSE-H	IANFOF	ìD]																	
Laboratory: TMA																					
Case:	SDG: I	B05WV6]																	
Sample Number		B05WV6	3	B05WV8	3	B05WV9	}	B05WW0)	B05WW	4	B05WW	5	<u> </u>		Ī		1		l	
Location		116-H-1	ı	116-H-	i	116-H-	1	116-H-1		116-H-1		116-H-2	<u> </u>	<u> </u>							\neg
Remarks		Split																		1	
Sample Date		03/09/92		03/09/92	2	03/10/92	2	03/10/92		03/11/92	:	03/13/92						1			\neg
Analysis Date		03/23/92	?	03/23/92	2	03/23/92	2	03/23/92		03/23/92		03/23/92									
Volatile Organic Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	ī
Chloromethane	10		U	11	U	10	Ū	11	Ū	10	Ū	10	U		1	1	1		1		\Box
Bromomethane	10		U	11	U	10	U		U		Ū	10	U		1				1	.0-51-	\Box
Vinyl Chloride	10		U	11	U	10	U	11	U	10	Ū	10	U				1		1		\Box
Chloroethane	10	,	U	11	U	10	U	11	U	10	U	10	U				1				
Methylene Chloride	10		U	11	U	10	Ū		U	10	U	10	บ	<u> </u>							\top
Acetone	10		U	15	Ü	10	U	130		15	U	14	Ū				1		1		П
Carbon Disulfide	10	1	U	5	U	5	U	5	Ū	5	כ	5	U							<u> </u>	-
1,1-Dichloroethene	10		U	5	U	5	U	5	U	5	U	5	U							ļ	\Box
1,1-Dichloroethane	10	5	U	5	U	5	U	5	U	5	U	5	U				Ì	<u> </u>			\Box
1,2-Dichloroethene (total)	10	5	Ū	5	Ü	5	U	5	Ū	5	U	5	U				†	1	1		Ħ
Chloroform	10	5	U	5	U	5	U	5	Ū	5	U	5	Ū				1		1		
1,2-Dichloroethane	10		U	5	U	5	U	5	Ū	5	U	5	Ū		\vdash						-
2-Butanone	10	11	U	11	U	10	U	11	U	10	U	10	Ū						1		\Box
1,1,1-Trichloroethane	10	5	Ū	5	U	5	U	5	Ü	5	U	5	Ū			· · · · · · · · · · · · · · · · · · ·	1				
Carbon Tetrachloride	10	5	Ū	5	U	5	U	5	U	5	U	5	Ū				Ī		1		\Box
Vinyl Acetate	10	11	Ū	11	Ü	10	Ū	11	Ü	10	Ū	10	U				1			<u> </u>	
Bromodichloromethane	10	5	U	5	U	5	U	5	Ū	5	บ	5	Ū				1		1	_	\Box
1,2-Dichloropropane	10	5	U	5	U	5	Ū	5	U	5	ΰ	5	U					1	1-		\Box
cis-1,3-Dichloropropene	10	5	U	5	U	5	U	5	U	5	U	5	U			l	1		1		\Box
Trichloroethene	10	5	Ū	5	U	5	U	5	U	5	Ū	5	U				1		 		\Box
Dibromochloromethane	10	5	U	5	U	5	U	5	Ű	5	U	5	Ū		1		T	1	1		\Box
1,1,2-Trichloroethane	10	5	U	5	U	5	Ū	5	U	5	U	5	Ü				1				1
Benzene	10	5	U	5	U	5	U	5	U	5	Ū	5	U		1		1				$\dagger \exists$
trans-1,3-Dichloropropene	10	5	Ū	5	U	5	Ū	5	U	5	Ū	5	U		1		1		 		+
Bromoform	10	5	U	5	Ū	5	Ū	5	Ü	5	U	5	U				1		 		+
4-Methyl-2-pentanone	10	11	Ū	11	U	10	U	11	U	10	Ū	10	Ū				1		t	· · · · ·	
2-Hexanone	10	11	Ū	11	U	10	Ū	11	U	10	U	10	U		1		-		1		\Box
Tetrachloroethene	10	5	U	5	U	5	Ū	5	U	5	Ü	5	Ū				1	,	1		
1,1,2,2-Tetrachloroethane	10	5	Ū	5	U	5	Ū	5	Ü	5	U	5	Ū				1	 			
Toluene	10	4	J	1	J	2	J	5	U	5	Ū	5	U		1						\sqcap
Chlorobenzene	10	5	U	5	Ų	5	Ū		Ų	5	Ū		Ū		 		T		T		+
Ethylbenzene	10	5	Ū	5	Ū	5	U	5	Ū	5	Ū	5	Ü		<u> </u>		Ť	1	\top		\Box
Styrene	. 10		Ü	5	U	5	Ū	5		5	U		Ü		İ	1	T				\Box
Xylene (total)	10	5	Ū	5	U	5	U	5	U	5	U	5	Ū		Π	Ī	Т	ľ			

BLANK AND SAMPLE DATA SUMMARY

REVIEWER: SC			DAT	E: 10/26/	92	PAGE_1_OF_1_			
-									
COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER	
Methylene chloride	8			ug/Kg	40	80	All	U	
Acetone	8	J		ug/Kg	40	80	All except B05WW0	U	
					·				
		_							
						-			
								,	
		ļ						x	
	COMPOUND Methylene chloride	COMPOUND RESULT Methylene chloride 8	COMPOUND RESULT Q Methylene chloride 8	COMPOUND RESULT Q RT Methylene chloride 8	COMPOUND RESULT Q RT UNITS Methylene chloride 8 ug/Kg	COMPOUND RESULT Q RT UNITS 5X RESULT Methylene chloride 8 ug/Kg 40	COMPOUND RESULT Q RT UNITS 5X RESULT RESULT Methylene chloride 8 ug/Kg 40 80	COMPOUND RESULT Q RT UNITS 5X RESULT RESULT AFFECTED Methylene chloride 8 ug/Kg 40 80 All Acetone 8 J ug/Kg 40 80 All except	

DATA QUALIFICATION SUMMARY

and the state of t

COMMENTS: COMPOUND Methylene chloride		DATE: 10/26/92 SAMPLES AFFECTED All	PAGE 1 OF 1 REASON Lab blank contamination
COMPOUND Methylene chloride	U	AFFECTED	REASON
Methylene chloride	U	AFFECTED	REASON
		Ali	I sh blank contomination
Acetone	U		Lao biank contamination
		All except B05WW0	Lab blank contamination
l			
		5	
			· · · · · · · · · · · · · · · · · · ·

		,	

P)

H
_
Q
Ċ
Ü
Ţ
털
ĩ
H
H
å
ŏ
N
ЬH
Re
4
•
0
_

Project: WESTINGHOUSE-I	IANFOF	RD .		7																	
Laboratory: Roy F. Weston				1																	
Case:	SDG:	B05WV7		1																	
Sample Number	·!	B05WV7	7							T		Τ'	·	T		Τ				T	
Location		116-H-	1	 		<u> </u>		 		 				 		 		 		-	
Remarks		Split				†·	-	·						 		 					
Sample Date		03/09/92	2	<u> </u>						 				<u> </u>		 		·		l	
Analysis Date		03/19/92	2									† 				 	-	 			
Volatile Organic Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	IQ
Chloromethane	10	10	U						\vdash		+		-	-	 	11111111	Ť	I TOOGIC	+=	rtoduit	+
Bromomethane	10	10	U		\Box	 	\top			· · · · · · · · · · · · · · · · · · ·	T	<u> </u>	\vdash	 	 	 	-	-	\vdash		+
Vinyl Chloride	10	10	U		\vdash		T		\vdash	 	1		 	 	\vdash						+
Chloroethane	10	10	U	1	一		\vdash		1		1					<u> </u>	 		1	 	+
Methylene Chloride	10		U					 			1	 		 	\vdash		 	 	 	 	+
Асеtопе	10	12		T			\uparrow		1	1	1	1	 	<u> </u>	┰	1		 	1		+
Carbon Disulfide	10		U		 		1		1		 		\vdash		 	i –			T		+
1,1-Dichloroethene	10		U				1		\top	 	1		1	 				1	 	 	+
1,1-Dichloroethane	10	5	Ū						1						 		1	 			+
1,2-Dichloroethene (total)	10	5	U						1					<u> </u>	┢	-	┼		一		+
Chloroform	10	5	Ū				Т		1	 	1		<u> </u>		Т	*******	1		 	-	+
1,2-Dichloroethane	10	5	U		П			i		<u> </u>	1-					<u> </u>		-	 		1
2-Butanone	10	10	U				Т	İ	1		1										+
1,1,1-Trichloroethane	10	5	Ü				T				1									 	+
Carbon Tetrachloride	10	5	U					<u> </u>			1			<u> </u>			<u> </u>		⇈		1
Vinyl Acetate	10	10	U						1	i	1			<u> </u>					 		_
Bromodichloromethane	10	5	Ü	1							1			<u> </u>	_		 		\vdash		
1,2-Dichloropropane	10	5	Ü				1		\vdash		1			 	 						
cis-1,3-Dichloropropene	10	5	U				1				 			 	 		 				
Trichloroethene	10	5	U						1		1-				\vdash		 		┢		+
Dibromochloromethane	10		U				\vdash		 		1			·	┪				 		+-
1,1,2-Trichloroethane	10	5	U						 		T		 	-		 	1		-	~	+
Benzene	10		U			i –			 	 	1			·	_	 		 	-		+
trans-1,3-Dichloropropene	10		U			 	1		 	·	1					 	 	 	├──		+
Bromoform	10		U		_	-	\vdash		1-	 	1						-		╁		
4-Methyl-2-pentanone	10		U			 	-		t		 		\vdash	 	 	-	\vdash	 	╂┉──		+
2-Hexanone	10		Ū			<u> </u>			 		1	 			\vdash			 	\vdash		+-
Tetrachloroethene	10		Ū				ļ —		 		 			 	_	-	╁				
1,1,2,2-Tetrachioroethane	10		Ū				1		╫		†				_	·	 	 			╁
Toluene	10		Ū		-	l	\vdash		1		1	1	\vdash	 	-	 	 		 		\vdash
Chlorobenzene	10		Ų			l	<u> </u>		 		1	1	\vdash		┢		 		<u> </u>		1
Ethylbenzene	10		Ū	 	 	 	†		 	 	1		 	 	\vdash		 				1
Styrene	10		Ū	 	 	 	\vdash	<u> </u>	 	 	1			 	 		-	 			1
Xylene (total)	10		Ü	 			l		 	 	 	 	一	 	 			 			\vdash

BLANK AND SAMPLE DATA SUMMARY

						·····	<u> </u>	<u> </u>					
SDG: B05WV7	REVIEWER: SC		_	DAT	E: 10/26/	92	PAGE_1_OF_1_						
COMMENTS:	COMMENTS:												
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER				
VBLK	Methylene chloride	1	J		ug/kg	5	10	B05WV7	U				
	-								w				
			- 										

2-2(

DATA QUALIFICATION SUMMARY

	<u> </u>		
SDG: B05WV7	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Methylene chloride	U	B05WV7	Lab blank contamination
		,	
		<u> </u>	
		[
		2	

			-

<u>ښ</u>

- 5
#
-
\sim
1,3
FÒ
Ç,
\Box
7
旦
4
1
. `~
7
- 1 1
٠.,
ı
$\overline{}$
082
Ω N
N1
•
Rev
<u>سَ</u>
w
C
•
_
_

Project: WESTINGHOUSE-H	IANFOE	ก		7																	
Laboratory: TMA		1																			
	SDG:	B05WW6		1																	
Sample Number	,000,	B05WW		B05WW	7			T		1		1		T		T		1		T	
Location		116-H-2		116-H-2		 		 				 		 				 		 	
Remarks		DUP		DUP		 								 		 		 			\neg
Sample Date		03/16/92	,	03/16/92	,—	 		 				<u> </u>		 		 		 			\dashv
Analysis Date		03/27/92		03/27/92														 			\dashv
	CROL	Result				Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	TQ
Chloromethane	10	10		10			╅	1	 		+	1	┢		 		 ~	113331	 		+
Bromomethane	10	10		10		 	┼┈	 	\vdash		┼	 	_	 	-		 	 	 		1
Vinyl Chloride	10	10		10				 		 	1		1	1	1		1	 	1		1
Chloroethane	10	10	Ū	10			 	 			+	 	t	 	 	 		 			\forall
Methylene Chloride	10			3		 			1		+	1	†		┢		1	<u> </u>	 	,	\top
Acetone	10	78		120	\vdash	 	1	1	\Box		1	 	T		T-		T		\top	<u> </u>	177
Carbon Disulfide	10			5	Ū	 		·	 		 	1	T		 		 	· · · · ·	\top		\Box
1,1-Dichloroethene	10	5	Ū	5			 	<u> </u>	\vdash		1		1					 	1		
1,1-Dichloroethane	10	5	U	5		 	†	1			1			 	 		1	 "			\Box
1,2-Dichloroethene (total)	10	5	U	5	U			 			1				i –	<u> </u>			1		\Box
Chloroform	10	5	Ū	5			 				1				\top			<u> </u>			
1,2-Dichloroethane	10	5	Ū	5	U		1								ĺ						
2-Butanone	10	10	U	10	U		1				T_						\top			"	\top
1,1,1-Trichloroethane	10	5		5													T				
Carbon Tetrachloride	10		U	5						l											
Vinyl Acetate	10	10	U	10							Ī										
Bromodichloromethane	10		Ū	5																	
1,2-Dichloropropane	10		U	5										T							
cis-1,3-Dichloropropene	10	5	U		U				·										٠,		
Trichloroethene	10	5	U	5										T]			v	
Dibromochloromethane	10		U	5										T							
1,1,2-Trichloroethane	10	5		5			T		Ţ	(Ţ]	\Box	Ţ	\						
Benzene	10	5	U		Ū		1				1										
trans-1,3-Dichloropropene	10	5	U	5																	
Bromoform	10	5	U	5	U		T				T								Ι		
4-Methyl-2-pentanone	10	10	U	10			T					Ĭ									
2-Hexanone	10	10		10			T		Ī.,		Ī			Ĭ						, ,	
Tetrachloroethene	10	5	U	5							Π.			T	1]		
1,1,2,2-Tetrachloroethane	10	5	U		U															l	
Toluene	10	5	U	2	U																
Chlorobenzene	10	5			U																
Ethylbenzene	10	5	U		U											l					
Styrene	10	5	U		U																
Xylene (total)	10	5	U	5	U					<u> </u>				<u> </u>		<u> </u>					

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WW6	REVIEWER: SC			DAT	E: 10/26/	92	PAGE 1 OF 1						
COMMENTS:													
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER				
VBLK0327R	Acetone	8	J		ug/kg		80	B05WW6	Ū				
			ļ										
				<u> </u>									
· · · · · · · · · · · · · · · · · · ·			<u> </u>										
			<u> </u>	<u> </u>									
•			ļ. —	ļ				,					
				_									
 			_										

DATA QUALIFICATION SUMMARY

enc. posumic	DEVENUED. CC	DATE: 10/06/00	DAGE 1 OF 1
SDG: B05WW6	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1_
COMMENTS:			······
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Acetone	U	B05WW6	Lab blank contamination
		<u></u>	
		,	

11

WHC-SD-EN-TI-082, Rev. 0

WELI	L AND SAMPLE	INFORMATIO)N	SAMPLE LOCATION INFORMATION
SAMPLE LOCATION	SAMPLE NUMBER	MATRIX	DATE SAMPLED	SEMI-VOLATILES
116-H-9	B05WN8 B05WN9 B05WP0	s s s	2/26/92 2/27/92 2/27/92	3-7, 3-8 3-7, 3-8 3-7, 3-8
116 - H-3	B05WP1 B05WP5 B05WP7	s s w	3/04/92 3/05/92 3/05/92	3-7, 3-8 3-14, 3-15 3-16, 3-17
116-H-7	B05WT8 B05WT9 B05WV1 B05WV2 B05WV3 B05WV4	S S S S S	2/27/92 2/28/92 2/28/92 3/02/92 3/02/92 3/02/92	3-7, 3-8 3-7, 3-8 3-9, 3-10 3-7, 3-8 3-7, 3-8 3-7, 3-8
116-H-1	B05WV6 B05WV7 B05WV8 B05WV9 B05WW0 B05WW4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3/09/92 3/09/92 3/09/92 3/10/92 3/10/92 3/11/92	3-20, 3-21 3-24, 3-25 3-20, 3-21 3-20, 3-21 3-20, 3-21 3-20, 3-21
116-H-2	B05WW5 B05WW6 B05WW7	s s s	3/13/92 3/16/92 3/16/92	3-20, 3-21 3-30, 3-31 3-30, 3-31

·**_**

7.

*

n

TEN BLANK
LET BLANK
MINOMLY

3.0 SEMI-VOLATILE ORGANIC DATA VALIDATION

3.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B05WN8 B05WP5 B05WV6 B05WV7 B05WW6

3.2 HOLDING TIMES

•

1

Analytical holding times were assessed to ascertain whether the holding time requirements for semi-volatile analyses were met by the laboratory. Westinghouse Hanford protocols require that samples be extracted within seven days of collection and be analyzed within 40 days of extraction (WHC 1991a).

Based upon Westinghouse Hanford data validation procedures, the seven day extraction holding time was exceeded for all of the soil samples in SDG Nos. B05WN8 and B05WP5, and sample numbers B05WV6, B05WV8, B05WV9, B05WW0 and B05WW4 in SDG No. B05WV6. These samples were flagged "J" and are considered to be estimated. However, these samples meet the requirements of EPA Data Validation Guidelines, which requires a fourteen day extraction holding time.

All holding time requirements for all other data packages were met.

3.3 INSTRUMENT CALIBRATION AND TUNING

3.3.1 GC/MS Tuning/Instrument Performance Check

Tuning is performed to ensure that mass resolution, and to some degree, sensitivity, of the GC/MS instrument has been established. When analyzing for semi-volatile organic compounds, the GC/MS is tuned using DFTPP. The GC/MS must be tuned prior to the analysis of either standards or samples, and tuning must meet the criteria established by the analytical protocol. The specific criteria for acceptable GC/MS tuning using DFTPP are outlined in Westinghouse Hanford procedures (WHC 1991) and in CLP protocols (EPA 1988a and 1988b).

As a part of data validation, the original tuning data were checked for transcription and calculation errors to verify that tuning and performance criteria were met.

All tuning and performance criteria were met.

3.3.2 Initial Calibration

The GC/MS instrument is calibrated to ensure that it is capable of producing acceptable and reliable analytical data over a range of concentrations. The initial and continuing calibrations are to be performed according to CLP protocols. An initial multipoint calibration is performed prior to sample analysis to establish the linearity range of the GC/MS instrument. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

Instrument response is established by the initial calibration when the RRFs for all target compounds are greater than or equal to 0.05 units. Linearity is established when the RSDs of the RRFs are less than or equal to 30 percent.

All initial calibration results were acceptable.

3.3.3 Continuing Calibration

The criteria for accepting the continuing calibration require that a standard be analyzed at least once per 12 hour period and that the RRFs of all target compounds be greater than or equal to 0.05 units. In addition, the percent difference of these RRFs must be less than or equal to 25 percent of the average RRFs calculated for the associated initial calibration.

The %Ds for the continuing calibrations did not meet QC limits for the following compounds. All of the associated samples were flagged as estimates (J):

• 3-nitroaniline, 4-nitroaniline, 3,3'-dichlorobenzidine, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene.

All other continuing calibration results were acceptable.

3.4 BLANKS

£ . }

7.7

Method blank and field blank analyses are performed to determine the extent of laboratory or field contamination of samples. No contaminants should be present in the blanks. Analytical results for analytes present in any sample at less than 5 times the concentration of that analyte found in

associated blanks should be qualified as non-detects; in the case of certain common laboratory contaminants, results less than 10 times blank concentrations should be qualified as non-detects.

Due to the presence of di-n-butylphthalate in the laboratory blank, the following associated sample results for the above analyte were qualified as non-detects (U qualifier):

- Sample numbers B05WP1, B05WT8, B05WT9 and B05WV4 in SDG No. B05WN8.
- All samples associated with SDG No. B05WW6.
 - All other blank results were acceptable.

3.5 ACCURACY

._>

14

Accuracy was assessed by evaluating the recoveries of stable isotopically labeled surrogate compounds added to all samples and blanks, and by the analysis of a representative sample which was spiked with a variety of organic compounds.

3.5.1 Matrix Spike Recovery

Matrix spike compounds are added to a sample which is representative of the sample delivery group. Matrix spike analyses are performed in duplicate using the 11 compounds specified by CLP protocols. All recoveries for the 11 compounds should be within the established QC limits (EPA 1988b). The matrix spike analyses estimate how much the analyses for the target compounds are interfered with, either positively or negatively, by the sample matrix. Because the matrix spike is performed using only one of the samples extracted with the SDG, these data alone cannot be used to evaluate the precision and accuracy of individual samples.

The matrix spike/matrix spike recoveries were out of specification for sample number B05WV7 in SDG No. B05WV7. Phenol was recovered at 15% and zero recoveries were reported for acenaphthene and pyrene. All associated results were flagged as estimates ("J").

All other matrix spike/matrix spike duplicate recovery results were acceptable in all cases.

3.5.2 Surrogate Recovery

Surrogate compound recoveries are calculated using analytical results from six stable, isotopically labeled surrogate compounds added to the sample prior to sample

preparation and analysis. Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. When recoveries for any two surrogate compounds are out of the control window, all positively identified target compound concentrations in samples associated with the unacceptable surrogate recoveries are qualified as estimates (J) and undetected compounds are qualified as having an estimated detection limit (UJ).

All surrogate recovery results were acceptable.

3.6 PRECISION

9.54

The precision is expressed by the RPD between the recoveries of the matrix spike and the matrix spike duplicate analyses performed on a sample, and through a comparison of the results for field duplicate samples. Acceptable control windows for RPD for matrix spike/matrix spike duplicate analyses have been established by the EPA CLP program.

Field precision is measured by analyzing duplicate samples taken in the field. No standards have been established for qualifying data based on RPD for duplicate field samples by CLP protocols. Westinghouse Hanford procedures establish the following criteria for duplicate field sample analyses for organic compounds, based on criteria established for inorganic analyses for laboratory duplicates:

- For compounds whose concentrations are greater than 5 times CRQL, RPDs, must be ±20 percent for aqueous samples and ±35 percent soil samples.
- When one or more compounds are present at concentrations less than 5 times CRQL, the concentration difference must be ± CRQL for aqueous samples and ± CRQL for soil samples

The matrix spike/matrix spike duplicate RPD for phenol exceeded the QC limit for sample number B05WV7 in SDG No. B05WV7. All associated results were flagged as estimates ("J").

All other matrix spike/matrix spike duplicate RPDs results were acceptable.

3.7 SYSTEM PERFORMANCE

Internal standard performance was assessed to determine whether abrupt changes in instrument response and sensitivity occurred that may have affected the reliability of the analytical data. The response (area or height) of the internal standards must not vary by more than -50 percent or +100 percent from the

response of the calibration standard that was used to calculate the upper and lower bounds. The upper and lower bounds define the range for acceptable internal standard response (area/height) for the sample analyses. In addition, retention times for the internal standard must not vary more than ±30 seconds from that of the associated calibration standard.

All internal standard results were acceptable.

3.8 COMPOUND IDENTIFICATION AND QUANTITATION

The identities of detected compounds were confirmed to investigate the possibility of false positives. The confirmation of compound identification during the QA review focuses on false positives because only mass spectra for positive identifications are submitted. However, target compounds that are reported as undetected are also evaluated to investigate the possibility of false negatives. Confirmation of possible false negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., detection limits, linearity, analytical recovery). Compound retention times and mass spectra must match those for the standard within set to tolerance limits (EPA 1988b).

3.8.1 Reported Results and Quantitation Limits

. **

. .

Compound quantitations and reported detection limits were recalculated and verified to ensure that they are accurate and are consistent with the internal standards and relative retention times specified by the CLP scope of work.

At concentrations below the CRQL, instrument precision becomes more variable as the IDL is approached. Therefore, the concentrations of any compound detected below the CRQL are qualified as estimates.

All compound identifications and quantitations have been verified as correct.

3.8.2 Tentatively Identified Compounds

Several TICs were identified in the blanks and samples which were flagged "U" according to Westinghouse protocols; if the sample result was ±0.06 RRT from that of the blank and if the sample result was less than 5 times the highest blank concentration.

This action is contrary to EPA policy, which indicates that TIC results shown to be due to the presence of blank contamination are flagged "R."

3.9 OVERALL ASSESSMENT AND SUMMARY

7

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts in baseline stability, retention time shifts, extraneous peaks, sensitivity) were found during the quality assurance review.

In general, the semi-volatile data presented in this report met the protocol-specified QA/QC requirements. Minor blank contamination was detected in the samples. Several compounds did not meet the QC limits for the continuing calibrations; all associated results were qualified as estimates. The sampling to extraction holding time was exceeded, though not grossly exceeded, for samples associated with SDG Nos. B05WN8, and B05WP5 and several samples in SDG No. B05WV6. As required by Westinghouse Hanford protocols, all results for these samples were flagged "J" and are considered estimates only. Sample number B05WV7 in SDG No. B05WV7 exhibited matrix spike/matrix spike duplicate recoveries and RPDs outside of QC limits. All associated results are flagged as estimates ("J"). All other results are considered to be acceptable and usable for all purposes.

Σ.
H
C
1
23
Ď
١,
昱
z.
1_
Н
Н
ı
O
∞
8
•
Ž
ው
< −
•
0
_

Project: WESTINGHOUSE-HAI	NEORD			1															
Laboratory: TMA	W OILD			1															
Case:	SDG: I	B05WN8		-															
Sample Number	1000.	B05WN8	}	B05WNS)	B05WP0)	B05WP1		B05WT8	}	B05WT9)	B05WV2	2	B05WV3	3	B05WV4	
Location		116-H-9		116-H-9		116-H-9		116-H-		116-H-		116-H-7		116-H-		116-H-7		116-H-7	
Remarks			_																-
Sample Date		02/26/92	!	02/27/92	<u>. </u>	02/27/92	2	03/04/92	2	02/27/92	2	02/28/92	!	03/02/92	2	03/02/92	2	03/02/92	<u>; </u>
Extraction Date	······································	03/11/92		03/11/92		03/11/92		03/11/92		03/13/92		03/11/92		03/11/92		03/11/92		03/11/92	
Analysis Date		04/09/92)	04/09/92	!	04/09/92	2	04/09/92	2	04/09/92		04/07/92	2	04/09/92	2	04/14/92	?	04/09/92	<u>. </u>
Semivolatile Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	330	340	IJ		IJ	320	ΩĴ	320	UJ	340	บิ	350	UJ	340	W	350	UJ	330	UJ
bis(2-Chloroethyl)ether	330	340	UJ	330	ÜĴ	320	ŰĴ	320	UJ	340	UJ	350	UJ	340	W	350	UJ	330	UJ
2-Chlorophenol	330	340	IJ	330	ŲJ		UJ	320	UJ	340	UJ	350	UJ	340	UJ	350	ŲĴ	330	W
1,3-Dichlorobenzene	330	340	IJ	330	UJ		ÚJ	320	UJ	340	UJ	350	UJ	340	UJ	350	ÜĴ	330	ŪJ
Benzyl Alcohol	330	340	υJ	330	υJ	320	IJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	IJ
1,2-Dichlorobenzene	330	340	W		UJ		υJ	320	UJ	340	UJ	350	UJ	340	บป	350	IJ	330	UJ
2-Methylphenol	330	340	UJ		IJ		UJ	320	ÜĴ	340	UJ		UJ	340	UJ	350	UJ	330	UJ
bis(2-Chloroisopropyl)Ether	330	340	IJ		IJ	320	UJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
4-Methylphenol	330	340	IJ	330	UJ	320	IJ	320	UJ	340	UJ	350	IJ	340	IJ	350	UJ	330	UJ
N-Nitroso-di-n-propylamine	330	340	UJ		UJ		UJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
Hexachloroethane	330	340	IJ		UJ		IJ	320	UJ	340	UJ		UJ	340	UJ	350	IJ	330	UĴ
Nitrobenzene	330	340	J		IJ	320	IJ	320	UJ	340	IJ	350	UJ	340	IJ	350	UJ	330	IJ
Isophorone	330	340	UJ	330	IJ	320	UJ	320	UJ	340	UJ	350	UJ	340	IJ	350	IJ	330	IJ
2-Nitrophenol	330	340	UJ		IJ	320	IJ	320	UJ	340	UJ	350	IJ	340	ŲΊ	350	UJ	330	UJ
2,4-Dimethylphenol	330	340	บม		IJ		IJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	IJ
Benzoic acid	1700	1700	UJ		UJ		IJ	1600	UJ	1700	UJ	1700	UJ	1700	IJ	1700	UJ	1600	UJ
bis(2-Chloroethoxy)methane	330	340	3	330	IJ	320	W	320	IJ	340	UJ	350	UJ	340	IJ	350	UJ	330	UJ
2,4-Dichlorophenol	330	340	IJ	330	UJ	320	IJ	320	UJ	340	ÚJ	350	UJ	340	UJ	350	UJ	330	IJ
1,2,4-Trichlorobenzene	330	340	IJ	•	UJ	320	UJ	320	UJ	340	UJ	350	UJ	340	IJ	350	UJ	330	UJ
Naphthalene	330	340	IJ		UJ	320	ÜJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
4-Chloroaniline	330	340	UJ		บป	320	UJ		UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
Hexachlorobutadiene	330	340	IJ		UJ	320	IJ	320	UJ	340	UJ	350	UJ	340	IJ	350	IJ	330	UJ
4-Chloro-3-methylphenol	330	340	UJ	330	UJ	320	IJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
2-Methylnaphthalene	330	340	ÜĴ	330	UJ	320	IJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
Hexachlorocyclopentadiene	330	340	IJ		IJ	320	UJ	320	UJ	340	UJ	350	UJ	340	UJ	350	UJ	330	UJ
2,4,6-Trichlorophenol	330	340	UJ	330	UJ	320	IJ	320	UJ	340	IJ	350	IJ	340	ŲĴ	350	UJ	330	UJ
2,4,5-Trichlorophenol	1700	1700	IJ		UJ	1600	IJ	1600	UJ	1700	UJ	1700	UJ	1700	UJ	1700	W	1600	UJ
2-Chloronaphthalene	330	340	IJ		UJ		UJ		UJ	340	UJ	350	บป	340	UJ	350	UJ	330	UJ
2-Nitroaniline	1700	1700	IJ		UJ		ŨĴ	1600	UJ	1700	ÜJ	1700	UJ	1700	UJ	1700	W	1600	IJ
Dimethy/phthalate	330	340	IJ		UJ		UJ	320	UJ	340	IJ	350	UJ	340	UJ	350	UJ	330	UJ
Acenaphthylene	330	340	IJ	330	UJ	320	ŲĴ	320	UJ	340	UJ	350	υJ	340	IJ	350	UJ	330	UJ

~!
H
ဂု
<u>13</u>
Ġ
Ė
Ÿ
H
Ҥ
Ó
8
•
벙
Rej
~
0

Project: WESTINGHOUSE-HA	NFORD]															
Laboratory: TMA																			
Case:	SDG:	B05WN8																	
Sample Number		B05WN		B05WN9		B05WP0		B05WP1		B05WT8		B05WT9		B05WV2		B05WV3		B05WV4	
Location		116-H-	9	116-H-9)	116-H-	9	116-H-	3	116-H-	7	116-H-7	7	116-H-	7	116-H-7	7	116-H-7	7
Remarks																			\Box
Sample Date		02/26/92		02/27/92		02/27/92		03/04/92		02/27/92		02/28/92		03/02/92		03/02/92		03/02/92	
Extraction Date		03/11/92		03/11/92		03/11/92		03/11/92		03/13/92		03/11/92		03/11/92	2	03/11/92	<u>}</u>	03/11/92	
Analysis Date		04/09/92		04/09/92		04/09/92		04/09/92		04/09/92		04/07/92		04/09/92	2	04/14/92		04/09/92	2
Semivolatile Compound	CRQL	Result	Q		Q	Result	Q	Result	Q	Result	Q				Q		Q		Q
3-Nitroaniline	1700	1700	ÜĴ	1600	UJ	1600	UJ	1600	UJ	1700	UJ	1700	UJ	1700	ŪĴ	1700	บ	1600	UJ
Acenaphthene	330	340	UJ	330	IJ	320	IJ	320	UJ	340	UJ		W	330	UJ		5	330	ΩJ
2,4-Dinitrophenol	1700	1700	UJ	1600	IJ	1600	UJ	1600	UJ	1700	UJ	1700	UJ	1700	lΩ	1700	IJ	1600	υJ
4-Nitrophenol	1700	1700	UJ	1600	IJ	1600	UJ	1600	IJ	1700	UJ	1700	IJ	1700	W		W	1600	UJ
Dibenzofuran	330	340	IJ	330	IJ	320	UJ	320	ÜJ	340	UJ	350	IJ	330	UJ		IJ	330	UJ
2,4-Dinitrotoluene	330	340	UJ	330	ÜJ	320	UJ	320	UJ	340	UJ	350	UJ	330	UJ	350	ΩJ	330	UJ
2,6-Dinitrotoluene	330	340	UJ	330	IJ	320	UJ	320	UJ	340	UJ	350	IJ	330	W	350	ÛĴ	330	UJ
Diethylphthalate	330	340	UJ	330	IJ	320	UJ	320	UJ	340	UJ	350	ŲJ	330	UJ		IJ	330	UJ
4-Chlorophenyl-phenyl ether	330	340	UJ	330	UJ	320	IJ	320	UJ	340	UJ	350	IJ	330	UJ	350	IJ	330	UJ
Fluorene	330	340	UJ	330	UJ	320	UJ	320	UJ	340	UJ	350	IJ	330	UJ	350	IJ	330	UJ
4-Nitroaniline	1700	1700	UJ	1600	บป	1600	UJ	1600	UJ	1700	UJ	1700	W	1700	W		IJ	1600	UJ
4,6-Dinitro-2-methylphenol	1700	1700	UJ	1600	UJ	1600	UJ	1600	UJ	1700	UJ	1700	UJ	1700	UJ	1700	IJ	1600	UJ
N-Nitrosodiphenylamine	330	340	UJ	330	UJ	320	UJ	320	UJ	340	UJ	350	IJ	330	UJ	350	UJ	330	UJ
4-Bromophenyl-phenylether	330	340	UJ	330	UJ	320	M	320	IJ	340	UJ	350	IJ	330	W	350	IJ	330	UJ
Hexachlorobenzene	330	340	UJ	330	UJ	320	UJ	320	UJ	340	UJ	350	UJ	330	UJ	350	UJ	330	UJ
Pentachlorophenol	1700	1700	UJ	1600	IJ	1600	UJ	1600	UJ	1700	UJ	1700	W	1700	UJ	1700	IJ	1600	UJ
Phenanthrene	330	340	IJ	330	UJ	320	UJ	320	UJ	340	UJ	350	UJ	330	UJ	350	UJ	330	UJ
Anthracene	330	340	ŲJ	330	UJ	320	IJ	320	IJ	340	UJ	350	UJ	330	UJ	350	IJ	330	บม
Di-n-butylphthalate	330	340	UJ	330	IJ	320	UJ	320	UJ	340	UJ	350	UJ	330	UJ		UJ		UJ
Fluoranthene	330	340	UJ	330	UJ	320	UJ	320	UJ	340	UJ	350	ÜĴ	330	UJ	350	ŪĴ	330	UJ
Pyrene	330	340	UJ	330	UJ	320	UJ	320	ŪJ	340	UJ	350	UJ	330	บบ		ŪĴ	330	UJ
Butylbenzylphthalate	330	340	UJ	330	UJ	320	UJ	320	ÚJ	340	UJ	350	IJ	330	UJ	350	IJ	330	W
3,3'-Dichlorobenzidine	330	690	UJ	690	UJ	650	บม	650	UJ	690	UJ	690	UJ	690	UJ	700	IJ	660	UJ
Benz(a)anthracene	330	340	UJ	330	บม	320	UJ	320	UJ	340	บม	350	UĴ	330	บม	350	ÜĴ	330	บม
bis(2-Ethylhexyl)phthalate	330	340	บม	330	บม	320	UJ	320	UJ	340	UJ	350	UJ	330	UJ	350	UJ	330	UJ
Chrysene	330	340	บป	330	UJ	320	UJ	320	UJ	340	UJ	350	UJ	330	UJ	350	UJ	330	UJ
Di-n-octylphthalate	330	340	UJ	330	UJ	320	UJ	320	IJ	340	UJ	350	ÜĴ	330	IJ	350	UJ	330	UJ
Benzo(b)fluoranthene	330	340	UJ	330	UJ	320	UJ	320	UJ	340	UJ	350	UJ	330	υJ	350	UJ	330	บป
Benzo(k)fluoranthene	330	340	UJ	330	UJ	320	UJ	320	UJ	340	UJ	350	ŪĴ	330	IJ	350	UJ	330	W
Benzo(a)pyrene	330	340	UJ	330	UJ	320	IJ	320	UJ	340	UJ	350	UJ	330	UJ	350	UJ	330	UJ
Indeno(1,2,3-cd)pyrene	330	340	UJ	330	UJ	320	UJ	320	ÚĴ	340	ÜJ	350	IJ	330	UJ	350	W	330	낎
Dibenz(a,h)anthracene	330	340	UJ	330	IJ	320	UJ	320	UJ	340	UJ	350	W	330	UJ	350	UJ	330	IJ
Benzo(g,h,i)perylene	330	340	IJ	330	IJ	320	UJ	320	IJ	340	UJ	350	UJ	330	UJ	350	IJ	330	UJ

μ

Laboratory: TMA	Project: WESTINGHOUSE-HAI	VFORD			7																•	
Case: SIGR: BOSWN9					1																	
Bioswy		SDG:	B05WN8		1																	
Location		1							I													
Remarks			1		 																·	
Extraction Date	L		EB		 																	
Analysis Date	Sample Date		02/28/9	2											ĺ							
Analysis Date	Extraction Date	····	03/06/9	2											<u> </u>							
Semivolatile Compound CRGL Result Q			04/10/92	2				-														
Phenol	Semivolatile Compound	CROL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
2-Chicrophenol 10 10 U U U U U U U U U		10	10	U		\sqcap		1		П										I		
1,3-Dichlorobenzene 10 10 U	bis(2-Chloroethyl)ether	10	10	U		1	1]				
1,4-Dichlorobenzene	2-Chlorophenol	10	10	U		İ		T T														
Benzyl Alcohol	1,3-Dichlorobenzene	10														ĺ				l		
1,2-Dichlorobenzene	1,4-Dichlorobenzene		10	Ū	1	1	1	1								Ĺ					**	
2-Methylphenol 10 10 U U U U U U U U U	Benzyl Alcohol	10	10	U				1													j. =	
Dis(2-Chloroisopropy)Ether	1,2-Dichlorobenzene	10	10	Ü				1				1								<u> </u>	-	
A-Methylphenol 10 10 U U U U U U U U U			10	U																	. "	
N-Nitroso-di-n-propylamine 10 10 U	bis(2-Chloroisopropyi)Ether							T														
N-Nitroso-di-n-propylamine 10 10 U	4-Methylphenol		10	U	1	1						1								1	′	
Nitrobenzene 10 10 U	N-Nitroso-di-n-propylamine	10	10	U			į.					1						[
Isophorone	Hexachloroethane	10	10	U				1														
2-Nitrophenol 10 10 U	Nitrobenzene																1					
2,4-Dimethylphenol 10 10 U												<u> </u>						1				
Benzolc acid 50 50 U								Ι														
Dis(2-Chloroethoxy)methane 10 10 U						1																
2,4-Dichlorophenol 10 10 U 1,2,4-Trichlorobenzene 10 10 U Naphthalene 10 10 U 4-Chloroaniline 10 10 U Hexachlorobutadiene 10 10 U 4-Chloro-3-methylphenol 10 10 U 2-Methylnaphthalene 10 10 U Hexachlorocyclopentadiene 10 10 U 2,4,6-Trichlorophenol 10 10 U 2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U																<u> </u>					<u> </u>	
1,2,4-Trichlorobenzene 10 10 U Naphthalene 10 10 U 4-Chloroaniline 10 10 U Hexachlorobutadiene 10 10 U 4-Chloro-3-methylphenol 10 10 U 2-Methylnaphthalene 10 10 U Hexachlorocyclopentadiene 10 10 U 2,4,6-Trichlorophenol 10 10 U 2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U										<u> </u>							<u> </u>					
Naphthalene								L								<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>	Ш
4-Chloroaniline 10 10 U Hexachlorobutadiene 10 10 U 4-Chloro-3-methylphenol 10 10 U 2-Methylnaphthalene 10 10 U 2-Methylnaphthalene 10 10 U Hexachlorocyclopentadiene 10 10 U 2,4,6-Trichlorophenol 10 10 U 2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U												<u> </u>						L				
Hexachlorobutadiene																		<u> </u>		1		
4-Chloro-3-methylphenol 10 10 U 2-Methylnaphthalene 10 10 U Hexachlorocyclopentadiene 10 10 U 2,4,6-Trichlorophenol 10 10 U 2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U						L	l											1				
2-Methylnaphthalene 10 10 U Hexachlorocyclopentadiene 10 10 U 2,4,6-Trichlorophenol 10 10 U 2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U						<u> </u>	Ì							<u> </u>		L	i			<u> </u>	<u> </u>	
Hexachlorocyclopentadiene											·			l		<u></u>						
2,4,6-Trichlorophenol 10 10 U 2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U																			1	<u> </u>		
2,4,5-Trichlorophenol 50 50 U 2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U]								<u> </u>	<u> </u>			
2-Chloronaphthalene 10 10 U 2-Nitroaniline 50 50 U Dimethylphthalate 10 10 U																						
2-Nitroaniline													ĺ		ļ]		
Dimethylphthalate 10 10 U																	<u> </u>					
Acenaphthylene 10 10 U	Acenaphthylene	10	10	U									<u> </u>									

Project: WESTINGHOUSE-HA	NEODD			٦																,	•
Laboratory: TMA	NI OND			-																	
Case:	SDG.	B05WN8		-{																	
Sample Number		B05WV		 	-	T		1		1		Γ				<u> </u>		1			
Location		116-H-		-			_	 										 			-
Remarks		EB		 	·····			 				 									
Sample Date		02/28/9	2	 		.		-							~~~						
Extraction Date		03/06/9		 		<u> </u>		 				 					-	 			
Analysis Date		04/10/9		 				 				 									
Semivolatile Compound	CDOL	Result		Docult	Q	Result	0	Docult	Q	Result	Q	Result	ī	Result	10	Result	Q	Result	Q	Result	Q
3-Nitroaniline	50		Ü	1 leadit	4	1 tosuk	4	I testit	<u> </u>	1 toodit	\	ricount	 `` -	ricadit	-	1100011		Troodic	<u> </u>	Tiodate	+=-
Acenaphthene	10		U	 	\vdash	ļ	+	 			╁─		┢				 	1	 		-
2,4-Dinitrophenol	50		Ü	 	 	 	-	 					 -		_		╁─	 			+
4-Nitrophenol	50	50		 	├	 	┼─		-		╂─	 	╁		┢		 		┢		+-1
Dibenzofuran	10		υ		├	 	-	<u> </u>	⊢		 		╁		├	 			-		+
2.4-Dinitrotoluene	10		Ü	 	├		-	 	 		 	 	\vdash						\vdash	•	+
2,6-Dinitrotoluene	10		Ü	-	┢		┢	 	 		-	<u> </u>	╁	 							+
Diethylphthalate	10		U	-	┢	 	 -	 			├		╁	 			┢				1
4-Chlorophenyl-phenyl ether	10	10		 	┼	 	┼	├──	 		 	 	 		_		├				1-1
Fluorene	10		Ü	 	├			 			┢─		├—	 			├	-	 		+
4-Nitroaniline	50		U	 	╁		╁	├	 		 		╁						_		+
4,6-Dinitro-2-methylphenol	50	50		<u> </u>	┢	ļ	-		\vdash		├	 	┼─				├	 	-		
N-Nitrosodiphenylamine	10		Ü	 	 	 	\vdash	-	\vdash			 			 		 		 		+
4-Bromophenyl-phenylether	10		Ü	1	╀	 	-	 			-	 	 	<u> </u>		ļ		 	\vdash		-
Hexachlorobenzene	10	10		 	╁	 	⊢	-	 			 	 				╁	 	 		
Pentachlorophenol	50		Ü	 	├	 	-	 	├	ļ		 	 		-		1-		-		+
Phenanthrene	10		Ü		1	<u> </u>	\vdash	 	├		-	-	\vdash				├─	 			+
Anthracene	10	10		 	 	<u> </u>		 	┢╾		\vdash		\vdash	 			 				+
Di-n-butylphthalate	10	10			-	 	╁	 	\vdash		\vdash	 	 	 	\vdash		\vdash	<u> </u>			1-1
Fluoranthene	10	10		+ *	\vdash	1	╁		├			 		<u>. </u>	ᆣ		\vdash				+
Pyrene	10		Ŭ	1	╁	 	╁		┢		 	 	╁─	·	-		╁	-	 		
Butylbenzylphthalate	10	10		 	 	 	╁╌	 	├─	l	┢╌		╁	1		 	 		 		1-1
3,3'-Dichlorobenzidine	10	20		 	\vdash	 	╁─	<u> </u>	╁		-	 	┼	 	-	 	┢	 	┪		+
Benz(a)anthracene	10	10		 	\vdash	<u> </u>	-	 			 -	 	+	 			╫		├		
bis(2-Ethylhexyl)Phthalate	10	10		 	 	 	-	 	 		╁	 	┼	 		·	-				1-1
Chrysene	10	10		+	╁	 	-	<u> </u>	-		-	<u> </u>	┼─			 	1	!	-		+
Di-n-octylphthalate	10	10		 	\vdash	 	+		├	 	 	 	┼		├	-	 	ĺ	 		+
Benzo(b)fluoranthene	10	10		 	 	 	┼┈	 	├	 	-	<u> </u>	╁		┢	 	╁	 	╁┷		
Benzo(k)fluoranthene	10	10		 	╁╾	 	\vdash	 	\vdash		-		 	ļ				· · · · · · · · · · · · · · · · · · ·	-		+
Benzo(a)pyrene	10	10		-	-	 	┼	 	 	 	-	 	\vdash	+	\vdash		\vdash	 	\vdash		+
Indeno(1,2,3-cd)pyrene	10	10		1	┼	 	╁	 	\vdash	 	\vdash	 	┼	 		 	 	 	1		+
Dibenz(a,h)anthracene	10	10		+	╁	 	┼	 	├	 	\vdash	 	+	 		-	╁	 	-	 	+
Benzo(g,h,l)perylene	10	10		+	\vdash	 	+	 	 		 	 	\vdash	 	-		\vdash	Ì	_	 	
Dougle (A) 11/10/2014	1	1	10		_	<u> </u>	1		Ь.	L	ــــــــــــــــــــــــــــــــــــــ	J	ــــــــــــــــــــــــــــــــــــــ		Щ	<u> </u>		1	<u>t </u>	L	لــــا

HC-SD-EN-TI-082, Rev. C

HOLDING TIME SUMMARY

SDG: B05WN8	REVIEWER:	RB		DATE: 10/26/	92	PAGE_	L_OF_1_
COMMENTS:							
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
B05WN8	BNA	2/26/92	3/11/92	4/09/92	7	40	J
B05WN9	BNA	2/27/92	3/11/92	4/09/92	7	40	1 -
B05WP0	BNA	2/27/92	3/11/92	4/09/92	7	40	J -
B05WT8	BNA	2/27/92	3/13/92	4/09/92	7	40	J -
B05WT9	BNA	2/28/92	3/11/92	4/07/92	7	40	J
B05WV2	BNA	3/02/92	3/11/92 .	4/09/92	7	40	J
B05WV3	BNA	3/02/92	3/11/92	4/14/92	7	40	J
B05WV4	BNA	3/02/92	3/11/92	4/09/92	7	40	J -
<u> </u>	<u></u>						
			-w w*				

ANA

1AH-

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WN8	REVIEWER: RB			DAT	E: 10/26/	92		PAGE_1_0	F_1
COMMENTS:			-	٠				,	
SAMPLE ID	COMPOUND	RESUL T	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER
SBLK0313S	Di-n-butylphthalate	77	J		ug/kg	385	770	B05WP1, B05WT8, B05WT9, B05WV4	U

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

SDG: B05WN8	REVIEWER: RB	DATE: 10/26/92	DACE 1 OF 1
	REVIEWER: RB	DATE: 10/26/92	PAGE_1_OF_1
COMMENTS:	OYLAY HEED	0.11.077.70.1.77	I == . aa-
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
All BNA compounds	J	B05WV2, B05NT9, B05WN9, B05WN8, B05WP0, B05WV3, B05WV4, B05WT8	Holding time
Di-n-butylphthalate	บ	B05WP1, B05WT8, B05WT9, B05WV4	Lab blank contamination
		9	
	, , , , , , , , , , , , , , , , , , , ,		
	, , , , , , , , , , , , , , , , , , , ,		
	-		
		,	

- •			

	,		

(~)

OHM
-SD-
7
Ė
EN-TI-082
Ė
7
စ္က
ถึ
•
Ž
Rev.
• `
0

				_																	
Project:WESTINGHOUSE-HAN	IFORD]																	
Laboratory: TMA]																•	•
Case:	SDG: E	305WP5																			
Sample Number		B05WP5						-													
Location		116-H-3	3																		
Remarks																					
Sample Date		3/05/92				1										<u> </u>					
Extraction Date		3/18/92				i						i		i .							
Analysis Date		4/10/92				Ï												<u> </u>			
Semivolatile Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	330		UJ				1	·····	 		1				1		1		\vdash		1
bis(2-Chloroethyl)ether	330	340	UJ				1		 		1		\vdash				1			-	
2-Chlorophenol	330	340	UJ		1		1		\vdash	· · · ·	 		1		 		 		\vdash		+
1,3-Dichlorobenzene	330	340	ÜĴ				╁		 				1				 	<u> </u>	 	<u></u>	†
1,4-Dichlorobenzene	330		UJ	<u> </u>			T			 	†		T	l	1	<u> </u>	t	 	 	_	+-
Benzyi Alcohol	330	340	UJ				1		_		t	 	1	 			 		 		+-
1,2-Dichlorobenzene	330	340	ÜĴ					İ	\vdash		·····	 	1	 	 		┼	-	\vdash		
2-Methylphenol	330	340	ŲJ				1	<u> </u>	 		1	<u> </u>	1		 		1				1
bis(2-Chloroisopropyl)Ether	330		UJ			 	╁	 	\vdash				╁╌╌		 		 		i –		┪—
4-Methylphenol	330		UJ		 		1				╁┈╴	<u> </u>	1	· · · · · ·	 -		t		1		╁
N-Nitroso-di-n-propylamine	330	340	ŪJ		1	1	<u> </u>				1	 	† 		 		+-		 		+
Hexachloroethane	330	340	บม		┢		 		 	· · · · ·			1-		 		1-		H		╅
Nitrobenzene	330	340	บม		\vdash	 	 		1		T		 		t		1		1		
Isophorone	330	340	UJ				╁		一		T		1	1			1	-			+
2-Nitrophenol	330	340	UJ				1		İ		1			 	 		1	<u> </u>	 		+
2,4-Dimethylphenol	330	340	ÜĴ	i	1		T		 		1						 		 		1
Benzoic acid	1700	1600	UJ		一	 	1				 				 				 		+
bis(2-Chloroethoxy)methane	330	340	IJ		\vdash		 				十一		1				\vdash		 		
2,4-Dichlorophenol	330	340	UJ	· · · ·	1-		1		 	' <u></u> I	\vdash		1		† —		 				1
1,2,4-Trichlorobenzene	330	340	UJ				1				1			 	 		+-	 	 -		+
Naphthalene	330	340	ŪJ		\vdash	 	1	 	1		\vdash		1-		一		\vdash		-		+
4-Chloroaniline	330		ŪĴ				-	 			1		 		 		\vdash		 		╁╌
Hexachlorobutadiene	330	340	UJ		 		1	 			\vdash	<u> </u>	 		-		╫		<u> </u>		
4-Chloro-3-methylphenol	330	340	UJ		1		t	1			╁		-		 	 	┧━		 		+-
2-Methylnaphthalene	330		ŪJ		 		1	 			 						+-		 		+
Hexachlorocyclopentadiene	330		ŪJ		 		 -		 		 		 		 		╁╌				
2,4,6-Trichlorophenol	330		ŪĴ			· · ·	+		 		1		┼		 		╁	-	├		
2,4,5-Trichlorophenol	1700		ŪJ		 	 	+			 	1		\vdash		 		 	 	1	<u> </u>	
2-Chloronaphthalene	330		ŪJ	 	\vdash	 	┼─	 	 		1	 	 	 	├	 	-	 	├—		+-
2-Nitroaniline	1700	1.	UJ		\vdash	 	╁	 		-	 		 	 	├──		-	 		-	+
Dimethylphthalate	330		บ๋า		1		\vdash	 			 ~		 		 	 	┼	 			+
Acenaphthylene	330		ÜĴ		1		+	-		 	1-		 	 		<u> </u>	┼		-		+
2,6-Dinitrotoluene	330	340	บป		 	 	+	 	 		 		 	 	 	 	├	 			

· 1

Project: WESTINGHOUSE-HAI	NFORD																				
Laboratory: TMA																				•	
Case:	SDG: E	305WP5																			
Sample Number		B05WP5																<u> </u>			
Location		116-H-3	3															<u> </u>			
Remarks		<u> </u>																			
Sample Date		3/05/92				<u> </u>															
Extraction Date		3/18/92				<u>.</u>															
Analysis Date		4/10/92																			
Semivolatile Compound				Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
3-Nitroaniline	1700	1600									<u> </u>						<u> </u>				丄
Acenaphthene	330	340																	L.		丄
2,4-Dinitrophenol	1700	1600													<u> </u>						$oldsymbol{ol}}}}}}}}}}}}}}}}}$
4-Nitrophenol	1700	1600	W																		
Dibenzofuran	330	340	UJ												П						
2,4-Dinitrotoluene	330	340	UJ		1	<u> </u>	Γ	1	\vdash					I							
Diethylphthalate	330	230	J			1			 												Т
4-Chlorophenyl-phenyl ether	330	340	UJ					1			П								1		Т
Fluorene	330	340	IJ		1		-								<u> </u>						T-
4-Nitroaniline	1700	1600	ŪĴ												 						1
4,6-Dinitro-2-methylphenol	1700	1600	ŲJ																		\top
N-Nitrosodiphenylamine	330	340														İ		· · · · · · · · · · · · · · · · · · ·	T	-	
4-Bromophenyl-phenylether	330	340			1	1	1										1			-	\top
Hexachlorobenzene	330	340	ŲJ						1		T			<u> </u>			Ī		 		1
Pentachlorophenol	1700	1600				<u> </u>	T				 										1
Phenanthrene	330	340	ŲJ		1		╈		1												\top
Anthracene	330	340			\vdash	<u> </u>	T		\vdash		 			<u> </u>	1	İ	1	1			\top
Di-n-butylphthalate	330	340			1		\vdash		 						<u> </u>			1			1
Fluoranthene	330	340			 	 	1								1				1		\top
Pyrene	330	340			1	i –	1		1										1		1
Butylbenzylphthalate	330	340				1			1		 							.			
3,3'-Dichlorobenzidine	330	680	IJ		${}^{+}$	1	1	1	1								1	1	1		1
Benz(a)anthracene	330	340			T		1	····	 						1		1-		1		\top
Chrysene	330	340		 	1	1	1	1	1		 	 		 		 	1	1	T	 	1
bls(2-Ethylhexyl)phthalate	330	340			†	 	\vdash	<u> </u>	T			<u> </u>		t e		<u> </u>	t		1	 	\top
Di-n-octylphthalate	330	340	UJ		\vdash	<u> </u>	\vdash	 	1-			 		 	 		1-		1	 	\top
Benzo(b)fluoranthene	330	340			1	 	+-	 	1				_	 	1	1	\top	1	T	<u> </u>	\top
Benzo(k)fluoranthene	330	340		 	┼	 	1		1						<u> </u>	 	┼	1	\top	 	1
Benzo(a)pyrene	330	340			+-	 	+	 	†	<u> </u>	 	 		 	 	 	T		1	 	\top
Indeno(1,2,3-cd)pyrene	330	340	W	 	+	1	+	-	1	 	 	 			1		一	 	1	 	+
Dibenz(a,h)anthracene	330	340			1-	1	+-	1	+	 			 		 		\top		1	 	+
Benzo(g,h,i)perylene	330	340				ļ	-	·				 		 			+	 	+		

Project: WESTINGHOUSE-HA	NEODD			7																	,
Laboratory: TMA	NEOND			-												•				·	
Case:	lono. r	305WP5		4																	
Sample Number	Janu: E	B05WP	7			T				,								· · · · · · · · · · · · · · · · · · ·		т	 1
										<u> </u>								<u> </u>		ļ <u> </u>	
Location		116-H-	3															ļ		<u> </u>	
Remarks		EB		ļ		ļ															
Sample Date		3/05/92				<u>ļ. </u>														ļ	
Extraction Date		3/12/92		ļ		ļ		ļ <u></u>						ļ.,		<u> </u>		ļ			
Analysis Date	10001	4/10/92	1	ļ		<u> </u>	1		T=		-							<u> </u>	,		
Semivolatile Compound				Result	Q	Result	<u>ļu</u>	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	10		U			ļ	╙		 		<u> </u>		<u> </u>	ļ			ļ				
bis(2-Chloroethyl)ether	10		U		<u></u>	ļ	_		<u> </u>		<u> </u>		<u> </u>		<u> </u>						Ш
2-Chlorophenol	10	10	U		<u> </u>	ļ	lacksquare	<u> </u>													
1,3-Dichlorobenzene	10	10				ļ. <u></u>	_	<u> </u>							$ldsymbol{le}}}}}}}}$		<u> </u>			in .	
1,4-Dichlorobenzene	10	10		ļ	L		<u> </u>											L		*	
Benzyl Alcohol	10	10					<u> </u>													*	
1,2-Dichlorobenzene	10	10		1							<u> </u>									*	
2-Methylphenol	10	10		<u> </u>				<u> </u>												, ,,,	
bis(2-Chloroisopropyl)Ether	10		บ								\Box								Ī	-	П
4-Methylphenol	10	10	U																Г	·	\Box
N-Nitroso-di-n-propylamine	10	10																			
Hexachloroethane	10	10						}												. ,	\Box
Nitrobenzene	10	10				<u> </u>	Γ														
Isophorone	10		U				Π													·	\Box
2-Nitrophenol	10	10					Γ.														
2,4-Dimethylphenol	10		U				П				1									4.	\Box
Benzoic acid	50	50															1 "	i	1	,	
bis(2-Chloroethoxy)methane	10		Ü								1					· · · · · · · · · · · · · · · · · · ·			T		\Box
2,4-Dichlorophenol	10	10					П								 					i	
1,2,4-Trichlorobenzene	10	10	U				T						<u> </u>				1		<u> </u>		П
Naphthalene	10	10	U																		\vdash
4-Chloroaniline	10	10	U				1				<u> </u>							,			\Box
Hexachlorobutadiene	10	10	U														1	 	Ι		$\forall \exists$
4-Chloro-3-methylphenol	10	10	Ü						 			·			 			 	1		1
2-Methylnaphthalene	10	10	Ìυ			<u> </u>					_			· · · · · · · · · · · · · · · · · · ·	 		-	· · · · ·	\vdash		\vdash
Hexachlorocyclopentadiene	10	10	Ū						\vdash						 		1-		 		${}^{\dag}$
2,4,6-Trichlorophenol	10		Ū	1			1					<u> </u>		 	 		+			 	┼─┤
2,4,5-Trichlorophenol	50	50		<u> </u>	 	1		<u> </u>			1			 	_		1		\vdash	 	 -
2-Chloronaphthalene	10	10		1	\vdash	T		 	 			 	 		1		1	 	-		+-1
2-Nitroaniline	50	50			 		1		 		Ι			 	\vdash		+	 	 	 	
Dimethylphthalate	10	10		1	 	 		 	1		\vdash			 	-		┪	 	\vdash	 	+-1
Acenaphthylene	10	10		 	\vdash	 	1-		\vdash		┢		-	-	├──		1-	<u> </u>		 	+
		<u> </u>	1-	1	<u> </u>					<u> </u>	ــــــــــــــــــــــــــــــــــــــ	I	Ц	1	l	L	1	<u> </u>	L	L	لحصك

Laboratory TMA	Project: WESTINGHOUSE-HAI	NFORD	RD																			•
Case: SIGG: BOSWP5 BOSWP5 BOSWP5 BOSWP7 BOSWP					1																	
Sample Number B65WP7		SDG: E	05WP5		1																	
Location	Sample Number			7		Г	Τ	T				1	1		Υ	1	I	Ι	1	T	<u> </u>	т.
Sample Date 3/05/6/2					 		 	1		 		_		╁	-	 		 	 	+	 	
Extraction Date	Remarks		EB		 		 	1		\vdash		T		 		1			 	╫┈		+-
Analysis Date	Sample Date		3/05/92			 	1	1		 		\vdash			 			1	-	┼──		+-
Seminoparities Compound CRQL Result Q Result	Extraction Date		3/12/92			 	 	1		 		 			ļ	 		1	1	 	 	
3-Nitroalline 50 50 U	Analysis Date		4/10/92		 			 -	 			<u> </u>		 		┢		┼─	 		 	+-
3-Nitroalline 50 50 U		CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	O	Result	o	Result	0
Acenaphthene 10 10 U						Η-	 	1		1		1		 	-	┝═╌		 - -		+-		+=-
2.4-Dintrophenol 50 50 0 0 0 0 0 0 0	Acenaphthene	10				1	1	\vdash	 	\vdash	· · · · · · · · · · · · · · · · · · ·			 -		\vdash		 		 		+
Distriction 10 10 0 0 0 0 0 0 0		50	50	Ū		_	 	1		1	· · · · · · · · · · · · · · · · · · ·	-	-			 			 	 		┼─
Distriction 10 10 0 0 0 0 0 0 0		50					1	1					 		<u> </u>				 	 		\dagger
2,6-Dinitrotoluene 10 10 U	Dibenzofuran					\vdash	1	\Box		1		<u> </u>	<u> </u>	_				 	 	1		一
2,6-Dinitrotoluene 10 10 U	2,4-Dinitrotoluene	10	10	U				\top		1		\vdash	· ·	Г				 		1-		${}$
4-Chlorophenyl-phenyl ether 10 10 U	2,6-Dinitrotoluene	10	10	U		 				1		T	· · · · ·	_				-	-	╁		十
## Chlorophenyl-phenyl ether	Diethylphthalate	10				<u> </u>	 			1		 		\vdash						 		\vdash
4-Nitroaniline 50 50 50 U	4-Chlorophenyl-phenyl ether	10		Ü		T	 	1					-		<u> </u>	 	-	1	<u> </u>	-		+
4,6-Dinitro-2-methylphenol 50 50 U	Fluorene	10	10	U	 				 	\vdash				 		\vdash		-	 	 		一
N-Nitrosodiphenylamine 10 10 U U U U U U U U U U U U U U U U U	4-Nitroaniline	50	50	U			 	1				_		\vdash	 		u		 	╁		\vdash
4-Bromophenyl-phenylether 10 10 U Image: control of the control o	4,6-Dinitro-2-methylphenol	50	50	Ū		 	 					一								╁		
Hexachlorobenzene	N-Nitrosodiphenylamine	10	10	U	_					-									-	 	 	1
Pentachlorophenol 50 50 U	4-Bromophenyl-phenylether	10	10	U				1		1		1				 				┪	 	十一
Phenanthrene	Hexachlorobenzene	10	10	Ū						1				<u> </u>						١.		
Anthracene 10 10 U	Pentachlorophenol	50	50	U	<u> </u>			 						1		 		1		 	1.	†
Di-n-butylphthalate	Phenanthrene	10	10	Ü				1		<u> </u>							·					
Fluoranthene	Anthracene	10	10	U		1		1							· · · · · ·	1			 	 	 	一
Pyrene	Di-n-butyiphthalate	10	6	J		<u> </u>		Ì		 			<u> </u>	 	·	ļ .			 	 		
Butylbenzylphthalate 10 10 U	Fluoranthene	10	10	U					<u> </u>	T				┢		1				 		1
3,3'-Dichlorobenzidine 10 20 U	Pyrene	10	10	U		\Box		1	-				1			 	-	 	 	\vdash	 	
Benz(a)anthracene	Butylbenzylphthalate	10	10	U				 		Ħ				┪				 		 		一
Dis(2-Ethylhexyl)Phthalate	3,3'-Dichlorobenzidine	10	20	U	1			!							· · · · · ·							${f au}$
Chrysene 10 10 U Image: Comparison of the compa	Benz(a)anthracene	10	10	Ü						-				_		 			 	-		\vdash
Chrysene 10 10 U Image: Comparison of the compa	bis(2-Ethylhexyl)Phthalate	10	10	U						 		1		 				-		 	-	\vdash
Benzo(b)fluoranthene	Chrysene	10	10	U				1				\vdash	<u> </u>	 -		 		 		 	 	╁
Benzo(k)fluoranthene	Di-n-octylphthalate	10	10	U		\vdash		 			- · · · · · · ·	-		✝				 	 	 	 	╁
Benzo(a)pyrene	Benzo(b)fluoranthene	10	10	U				i	l		-	m		 	 	 		_	 	-	 	 -
Indenc(1,2,3-cd)pyrene 10 10 U Dibenz(a,h)anthracene 10 10 U	Benzo(k)fluoranthene	10	10	Ü				1		 					 	 				\vdash		
Indenc(1,2,3-cd)pyrene 10 10 U Dibenz(a,h)anthracene 10 10 U	Benzo(a)pyrene	10		U		1	<u> </u>	T	 				<u> </u>	 		\vdash		 	 			+
Dibenz(a,h)anthracene 10 10 U	Indeno(1,2,3-cd)pyrene						·	T	 		-		·	_	l	 		 	 	 	 	+
	Dibenz(a,h)anthracene		10	U				T-	 			_	·					 	 	 		\vdash
Destard Birth 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1	Benzo(g,h,i)perylene	10	10	U						l -			<u> </u>	_		 		Ι	 	 		一

3-18

HOLDING TIME SUMMARY

SDG: B05WP5	REVIEWER:	MY		DATE: 2/03/93	3	PAGE_1	_OF_1_
COMMENTS:							
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
B05WP5	BNA	3/05/92	3/18/92	4/10/92	7	40	J
····							
•		<u> </u>					

WHC-SD-EN-TI-082, Rev.

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

	> • (
SDG: B05WP5	REVIEWER: MY	DATE: 2/03/93	PAGE_1_OF_1_
COMMENTS:			•
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
ALL BNA ANALYTES	J	B05WP5	Exceeded holding time
		<u> </u>	
			_
L			·

N T

S

WHC-SD
-EN
Ţ
H
ő
082,
ы
ev
7
0

Project: WESTINGHOUSE-HA	NFORD		,	1																	
Laboratory: TMA				1																	
Case:	SDG:	B05WV6		1																	
Sample Number	•	B05WV6	}	B05WV8	3	B05WV9		B05WW	0	B05WW4	4	B05WW5	;			ľ					
Location		116-H-1	1	116-H-1	ĺ	116-H-1		116-H-	1	116-H-1		116-H-2				<u> </u>					\neg
Remarks		Split				l															
Sample Date		03/09/92	2	03/09/92	•	03/10/92		03/10/92	2	03/11/92		03/13/92									\neg
Extraction Date		03/21/92	2	03/21/92	2	03/21/92		03/21/92	2	03/21/92	,	03/21/92				i					\neg
Analysis Date		04/14/92	2	04/14/92	2	04/14/92	_	04/14/92	2	04/14/92		04/14/92	•								
Semivolatile Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	330	340	IJ	340	UJ	340	IJ	350	UJ	330	IJ	340	Ū								\Box
bis(2-Chloroethyl)ether	330	340	บป	340	UJ	340		350	IJ	330	IJ	340	Ū		T	<u> </u>	\top		\Box		
2-Chlorophenol	330	340	ŨJ	340	UJ	340	ÜĴ	350	UJ	330	IJ	340	U				1		1		
1,3-Dichlorobenzene	330	340	UJ	340	UJ	340	IJ	350	UJ	330	IJ	340	U								\Box
1,4-Dichlorobenzene	330	340	UJ	340	UJ	340		350	UJ		UJ	340	U			1		1			\sqcap
Benzyl Alcohol	330	340	UJ	340	UJ	340	IJ	350	UJ	330	IJ	340	U		1		1				\Box
1,2-Dichlorobenzene	330	340	ŪJ	340	ŪJ	340	IJ	350	UJ	330	IJ	340	U					<u> </u>			\Box
2-Methylphenol	330	340	ÜJ	340	UJ	340	IJ	350	UJ	330	IJ	340	Ū				1	T			
bis(2-Chioroisopropyi)Ether	330	340	UJ	340	UJ	340	IJ	350	UJ	330	IJ	340	U			Ì					\Box
4-Methylphenol	330	340	UJ	340	UJ	340	IJ	350	UJ	330	IJ	340	U			i	1		T.		\top
N-Nitroso-di-n-propylamine	330	340	ÜJ	340	บป	340	IJ	350	UJ	330	ŲĴ	340	U			<u> </u>	1				
Hexachloroethane	330	340	IJ	340	บัง	340	UJ	350	UJ	330	IJ	340	Ū								\top
Nitrobenzene	330	340	ÜĴ	340	UJ	340	IJ	350	UJ		IJ	340	Ū		i			1			1
Isophorone	330	340	IJ	340	บป	340	ÛΊ	350	UJ	330	IJ	340	U				1				
2-Nitrophenol	330		IJ	340	UJ		IJ	350	UJ	330	IJ	340	U						1		\Box
2,4-Dimethylphenol	330	340	UJ	340	UJ	340	IJ	350	UJ	330	IJ	340	U								\top
Benzoic acid	1700	1700	UJ	1700	UJ	1600	IJ	1700	UJ	1600	IJ	1600	U				1				
bis(2-Chloroethoxy)methane	330	340	UJ	340	UJ	340	IJ	350	UJ	330	ŲĴ	340	U				1		1		\top
2,4-Dichlorophenol	330	340	UJ	340	UJ	340	IJ	350	UJ	330	IJ	340	Ū		T						
1,2,4-Trichlorobenzene	330	340	IJ	340	UJ	340	IJ	350	บป	330	UJ	340	Ü								
Naphthalene	330	180	UJ	180	UJ	340	บป	350	บป	330	IJ	340	U								
4-Chloroaniline	330	340	UĴ	340	UJ	340	IJ	350	UJ	330	UJ	340	U								\top
Hexachlorobutadiene	330	340	IJ	340	UJ	340	IJ	350	UJ	330	ÜĴ	340	Ū				1				\top
4-Chloro-3-methylphenol	330	340	IJ	340	UJ	340	IJ	350	UJ	330	IJ	340	Ū						1		
2-Methylnaphthalene	330	42	J	340	บัง	340	IJ	350	บป	330	IJ	340	Ū		ļ			<u> </u>	1		
Hexachlorocyclopentadiene	330		UJ	340	UJ		IJ	350	UJ		UJ	340	U	i		<u> </u>	T	1			
2,4,6-Trichlorophenol	330	340	IJ	340	UJ	340	ÚĴ	350	ÜĴ	330	UĴ	340	Ū				Τ_	1			\top
2,4,5-Trichlorophenol	1700	1700	IJ	1700	ŲĴ	1600	IJ	1700	UJ	1600	IJ	1600	Ü		1	1	1	1			
2-Chloronaphthalene	330	340	UJ	340	UJ	340	UJ	350	UJ	330	UJ	340	U		Ì		\top	i i	1		\top
2-Nitroaniline	1700	1700	UJ	1700	UJ	1600	IJ	1700	บป	1600	IJ	1600	Ū		1		1		1		
Dimethylphthalate	330	340	UJ	340	บู	340	UJ	350	บม	330	IJ	340	Ū		1		\top	1	1		7
Acenaphthylene	330	340	IJ	340	UJ	340	IJ	350	UJ	330	υJ	340	U			1					

Delement Manual Color Hat	UEODD	<u> </u>		İ																	
Project: WESTINGHOUSE-HAI	NEORD																				
Laboratory: TMA	lono.	B05WV6																		•	
Case:	SDG: 1			DOCUME		IDOCIANO		B05WW		B05WW	*	B05WW	•			ı		, 			
Sample Number		B05WV6		B05WV8		B05WV9						116-H-2				<u> </u>					——
Location	<u> </u>	116-H-1	1	116-H-1	<u> </u>	116-H-1		116-H-1		116-H-1	<u> </u>	110-0-2	-			<u> </u>		 		ļ	
Remarks	ļ	Split		00/00/06		00/40/00		00/40/00		00/44/00		03/13/92				 		 		 	
Sample Date		03/09/92		03/09/92		03/10/92		03/10/92		03/11/92						 					
Extraction Date	ļ	03/21/92		03/21/92		03/21/92		03/21/92		03/21/92		03/21/92									
Analysis Date		04/14/92		04/14/92		04/14/92		04/14/92		04/14/92		04/14/92		5 4	٠.	<u> </u>	10	D	1	D	ᅲ
Semivolatile Compound					Q		Q							Result	Q	Result	Q	Result	Q	Result	Q
3-Nitroaniline	1700		UJ	1700	UJ	1600		1700	UJ		IJ		Ú				┦—		ļ	<u> </u>	+
Acenaphthene	330		J	340	IJ	340		350	IJ		UJ	340			<u> </u>				ļ		
2,4-Dinitrophenol	1700	1700		1700	ÜĴ	1600		1700	5		ΩJ	1600			<u> </u>		1_				1
4-Nitrophenol	1700		UJ	1700	UJ	1600		1700	3		UJ	1600			<u> </u>		1		ļ	ļ	\bot
Dibenzofuran	330		J	340	IJ	340		350	ŲJ		ÜJ		U		<u> </u>	ļ	<u> </u>		1		4
2,4-Dinitrotoluene	330		UJ	340	IJ	340		350	IJ		IJ		U					<u> </u>	1	<u> </u>	
2,6-Dinitrotoluene	330		ÜĴ	340	บัป	340		350	IJ	330	UJ		U		<u> </u>	<u> </u>		<u> </u>		<u> </u>	
Diethylphthalate	330		UJ	340	IJ	340		350	IJ	330	ÜJ	340	U								
4-Chlorophenyl-phenyl ether	330		UJ	340	ÜĴ	340			IJ		UJ	,	Ü							İ	
Fluorene	330		J	340	UJ	340		350	UJ		UJ		ט								
4-Nitroaniline	1700	1700	บป	1700	UJ	1600	IJ	1700	ÜJ		UJ	1600									
4,6-Dinitro-2-methylphenol	1700		บป	1700	UJ	1600		1700	IJ		บับ	1600				Ĺ					
N-Nitrosodiphenylamine	330		UJ	59	J	340		350	ŲΊ	330	UJ		U				L				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
4-Bromophenyl-phenylether	330		UJ	340	UJ	340		350	IJ	330	IJ		U					<u> </u>			
Hexachlorobenzene	330		UJ	340	ÜJ	340		350	IJ	330	W	1	Ų								
Pentachiorophenol	1700	1700	UJ	1700	IJ	1600	UJ	1700	UJ	1600	UJ	1600	U			ļ					
Phenanthrene	330		J	41	J	35		350	UJ		UJ		5						1		
Anthracene	330	,	J	340	UJ	340		350	บม		UJ	1	5								
Di-n-butylphthalate	330	59	J	68	J	50	J	350	IJ	46	J	48	J		1						
Fluoranthene	330	1800	J	63	J	110	J	350	UJ		UJ	,-	U				1				
Pyrene	330	1200	J	48	J	85	J	350	IJ	330	UJ		Ü								
Butylbenzylphthalate	330	340	UJ	340	UJ	340	UJ	350	UJ	330	UJ	340	Ü				Т		Т		\Box
3,3'-Dichlorobenzidine	330	690	UJ	690	บม	670	UJ	690	UJ	660	UJ	680	Ũ	ì	1		1		Τ		
Benz(a)anthracene	330	940	J	39	J	78	J	350	UJ	330	ÜJ	340	Ū			i	1				
bis(2-Ethylhexyl)Phthalate	330	340	UJ	68	J	340	IJ	350	UJ	330	UJ	340	U			1	1				
Chrysene	330		J	340	ŪĴ	77		350	UJ	330	UJ	340	Ū						1		
Di-n-octylphthalate	330	340	UJ	340	UJ	340	IJ	350	ŪJ	330	ÚJ	340	ט		\top	† — · · · · · · ·	1	T	1		
Benzo(b)fluoranthene	330	890	J	340	IJ	130	IJ	350	ÜĴ	330	UJ	340	U		1	··	\top		 	1	\top
Benzo(k)fluoranthene	330		J	340	UJ		UJ	350	ŪJ	330	UJ		Ū			† · · · · · ·	1	1			
Benzo(a)pyrene	330		J	340	ÜĴ		J	350	ŪJ	330	ŪĴ	340	Ū		1	 	1	†	1		1
Indeno(1,2,3-cd)pyrene	330	520	j-	340	UJ	340			ŪĴ	330	UJ	340	Ū		1	 	1	·	1		1
Dibenz(a,h)anthracene	330	340	1 -	340	ÜJ				ŪĴ	330	UJ				1	<u> </u>	\top		1		
Benzo(g,h,i)perylene	330	410		340	ŪJ		ÜJ		ŪJ	330	ÜĴ		Ū	i	1	 	1	1	 		1-1

HOLDING TIME SUMMARY

SDG: B05WV6	REVIEWER:	SC		DATE: 10/26/	/92	PAGE_1	_OF <u>_1</u>
COMMENTS:							
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
B05WV6	BNA	3/9/92	3/21/92	4/14/92	7	40	J
B05WV8	BNA	3/9/92	3/21/92	4/14/92	7	40	J
B05WV9	BNA	3/10/92	3/21/92	4/14/92	7	40	J
B05WW0	BNA	3/11/92	3/21/92	4/14/92	7	40	J
B05WW4	BNA	3/11/92	3/21/92	4/14/92	7	40	J
			_				
· · · · · · · · · · · · · · · · · · ·							

9

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

<u> </u>		<u>ı</u>	
SDG: B05WV6	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
All BNA compounds	J	All except B05WW5	Extraction holding time
		,	
	<u> </u>		
,			
[[<u> </u>	l	I and the second

)HW
$\vec{\Omega}$
Ė
Ĭ
된
ΉI
Ï
82
•
Re
?
0

Project: WESTINGHOUSE-HAI	VFORD																				
Laboratory: Roy F. Weston		·		}																•	
Case	SDG:	B05WV7																		· · · ·	
Sample Number		B05WV7																<u></u>			
Location		116-H-1																			
Remarks		Split																<u> </u>			
Sample Date		03/09/92																			
Extraction Date		03/16/92															·				
Analysis Date		03/31/92																<u> </u>			
Semivolatile Compound				Result	Q	Result	Q	Result	Q	Result	Q	Result	a	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	330		IJ				\prod														
bis(2-Chloroethyl)ether	330		IJ						Ī		Ī										
2-Chlorophenol	330		UJ															l			
1,3~Dichlorobenzene	330		ŲJ				Τ														
1,4-Dichlorobenzene	330		IJ				Π		Π												
Benzyl Alcohol	330		UJ				T-	1			T			·	Г						\Box
1,2-Dichlorobenzene	330		IJ				Π														
2-Methylphenol	330		IJ						T -		1										
bis(2-Chloroisopropyl)Ether	330		UJ				1										1		1		
4-Methylphenol	330		IJ														1			ĺ	
N-Nitroso-di-n-propylamine	330		IJ				П														\Box
Hexachloroethane	330		IJ			T	T				T										\Box
Nitrobenzene	330		IJ														1				
Isophorone	330		UJ																		
2Nitrophenol	330		IJ								Ī						1				
2,4-Dimethylphenol	330		W				T		T		T						T		Γ'''		
Benzoic acid	1700		UJ																		
bis(2-Chloroethoxy)methane	330		บป																		
2,4-Dichlorophenol	330		IJ																		
1,2,4-Trichlorobenzene	330		UJ												T						\Box
Naphthalene	330		IJ			1	T	1									1		П		
4-Chloroaniline	330		IJ				T										1		1		
Hexachlorobutadiene	330	1800	UJ				T		1		İ										
4-Chloro-3-methylphenol	330	1800	IJ				Τ		1		1			· · · · · · · · · · · · · · · · · · ·			7		1		
2-Methylnaphthalene	330	350	J				\top		Ī		1						1		1		
Hexachlorocyclopentadiene	330	1800	UJ		1				⇈								1				\Box
2,4,6-Trichlorophenol	330	1800	UJ				Т		1					<u> </u>							\Box
2,4,5-Trichlorophenol	1700		UJ				1			·						<u> </u>	1	1	1	1	1
2-Chloronaphthalene	330	1800	W		<u> </u>	1	T	1	 		1			İ			1				\Box
2-Nitroaniline	1700		UJ				1				T			1			\top	1	1	1	
Dimethylphthalate	330	1800	UJ			1		1	1		1				<u> </u>		1		1	l	
Acenaphthylene	330		UJ	1	П		T				\top						1	1	1	<u> </u>	
2,6-Dinitrotoluene	330	1800	UJ				1			ĺ		Ì									

Project: WESTINGHOUSE-HA	NFORD			4																	
Laboratory: Roy F. Weston	T-2-5																				
Case	SDG:	B05WV7				· · · · · · · · · · · · · · · · · · ·															
Sample Number	ļ	B05WV	-											1		<u></u>					
Location		116-H-	1											<u> </u>							
Remarks	<u> </u>	Split																			
Sample Date		03/09/92				<u> </u>	•											Í			
Extraction Date		03/16/92						1													
Analysis Date		03/31/92																			
Semivolatile Compound	CRQL	Result		Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
3-Nitroaniline	1700	8800	UJ	<u> </u>						i		Ì					1				
Acenaphthene	330	2100	J						<u> </u>	<u> </u>	1						1			±	1
2,4-Dinitrophenol	1700	8800	UJ	<u> </u>		1									1						\top
4-Nitrophenol	1700	8800	UJ	1		1	1	 							 	1	1	1	†		1
Dibenzofuran	330	1200	J	<u> </u>		<u> </u>	1	1		l	\vdash		T	 				İ	1	 	+-
2,4-Dinitrotoluene	330	1800	UJ			† 	1				✝				 	-	1		╁╌		+
Diethylphthalate	330	1800	UJ	 		 	┪	 			\vdash		\vdash	 			1		 		+-
4-Chlorophenyl-phenyl ether	330	1800	UJ			1	╁			·····	┼──	 	-				╁	 	 		┼─
Fluorene	330	1900			 	 	+				╁─	 		 	一	-	┼	 	+		+
4-Nitroaniline	1700		UJ		-	 		 	 	-	+	<u> </u>	 	 	┢	<u> </u>	╌		+	-	╫
4,6-Dinitro-2-methylphenol	1700	8800	UJ			 	╂─	 			┼	 	 		一	 	┼─	1	┼		┼─
N-Nitrosodiphenylamine	330	1800	ŪJ				+	 			┼	 	╫		├	-	 	 	\vdash	! !	$+\!-$
4-Bromophenyl-phenylether	330	1800	ÜĴ		╁		+	 	 	 	 		╢		\vdash		 	 	╁─╌		+-
Hexachlorobenzene	330	1800	UJ	<u> </u>	_	 	+	<u> </u>	 	 ·· ··· ·	┼		┢				 	 	├		╫
Pentachlorophenol	1700	8800	ΨJ				+-	 	 	 	1	 	 	 				 	1		┼─
Phenanthrene	330	16000			\vdash	 	+	 	 	 	╁	 	-				╌	 	╁		╫
Anthracene	330	4100	J		_	 	┧	ļ	 	<u> </u>	┼				.,		-	1	├─		╫
Di-n-butylphthalate	330		UJ				+	-			\vdash	-	\vdash				 		-		┼
Fluoranthene	330	18000		 	-			 	-		┼		\vdash			-	╁	 	1—		+
Pyrene	330	17000	J				╁	 -			 				╁	 	╌	 	 		┿
Butylbenzylphthalate	330	1800	UJ		\vdash	 	╁	-	-	 	 			 	├	 	├	 	 		┰
3,3'-Dichlorobenzidine	330	3500	UJ		 		+	 	-	 -	-		\vdash			 	┢		├		┼
Benz(a)anthracene	330	8600	J				╫	 			 			<u> </u>	-	 	├	 	 		┼
Chrysene	330	7800	Ĵ		 		+	 				 	 			 		1	 		+
bis(2-Ethylhexyl)phthalate	330	1	UJ			 	+	 	\vdash		-	 	\vdash			 	├		┝		┼
Di-n-octylphthalate	330	1800				 	╁	 	 		-	 		 	 	 	-	 	\vdash	ļ	+
Benzo(b)fluoranthene	330	6500	J	<u> </u>		 	╀	1			-	 	<u> </u>		 	 	┝	-			—
Benzo(k)fluoranthene	330	7200	J		-	 	+	 	<u> </u>			ļ	\vdash			 	 		_		—
Benzo(a)pyrene	330	8700				<u> </u>	╀	 			-				-		<u> </u>	 	<u> </u>		↓
Indeno(1,2,3-cd)pyrene	330	4700			ļ	 	+	 	 	ļ	┼	<u> </u>	<u> </u>	ļ <u></u>	<u> </u>	<u> </u>	_		ļ		╀
Dibenz(a,h)anthracene	330	2000		ļ	-	 -		<u> </u>	├—				<u> </u>	<u> </u>			<u> </u>	ļ	<u> </u>		
Benzo(g,h,i)perylene	330			 	 	ļ <u> </u>	\vdash	 	ļ		<u> </u>		<u> </u>		<u> </u>		ļ		<u> </u>		ــــــــــــــــــــــــــــــــــــــ
Denzo(g,n,i)peryiene	1 330	4900	J	L	<u> </u>	<u> </u>	Ш.	<u> </u>	<u></u>	l	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	L		<u> </u>	<u> </u>	L	<u> </u>	<u> </u>		丄

C-SD-EN-TI-082, Rev. 0

CALIBRATION DATA SUMMARY

SDG: B05WV7	REVIEWER: SC	DATE: 10	PAGE_ 1_0	OF <u>1</u>								
COMMENTS:												
CALIB. TYPE:	INITIAL <u>CONTINUING</u>	INSTRUMENT:										
CALIB. DATE	COMPOUND	RF	RSD/ <u>%D</u> /%R	SAMPLES AFFECTED	QUALIFIER							
3/31/92	3-Nitroaniline	0.344	-63.0	B05WV7	J							
3/31/92	4-Nitroaniline	0.237	-39.4	B05WV7	J							
3/31/92	3,3'-Dichlorobenzidine	0.331	-67.2	B05WV7_	J							
3/31/92	Indeno(1,2,3-cd)pyrene	1.285	-30.9	B05WV7	J							
3/31/92	Dibenzo(a,h)anthracene	1.001	-32.6	B05WV7	J							

C-SD-EN-TI-082, Rev. 0

ACCURACY DATA SUMMARY

SDG: B05WV7	REVIEWER: SC	DATE: 10/26/92	PAG	E_1_OF_1_
COMMENTS:				
SAMPLE ID	COMPOUND	MS/MSD % RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED
B05WV7	Phenol	12	B05WV7	J
B05WV7	Acenaphthene	0	B05WV7	J
B05WV7	Pyrene	0	B05WV7	J
•		•		

WHC-SD-EN-TI-082, Rev. 0

PRECISION DATA SUMMARY

	 		 							
SDG: B05WV7	REVIEWER: SC		DATE: 10/26/92		PAGE_1_OF_1					
COMMENTS:		***								
COMPOUND		SAMPLE ID:	SAMPLE ID:	RPD	SAMPLES AFFECTED	QUALIFIER				
Phenol		B05WV7	B05WV7D	135	B05WV7	J				
						-				
					L					

DATA QUALIFICATION SUMMARY

SDG: B05WV7	REVIEWER: SC	DATE: 10/26/92	PAGE 1 OF 1
COMMENTS:			.1
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
3-Nitroaniline	J	B05WV7	Continuing calibration
4-Nitroaniline	J	B05WV7	Continuing calibration
3,3'-Dichlorobenzidine	1	B05WV7	Continuing calibration
Indeno(1,2,3-cd)pyrene	J	B05WV7	Continuing calibration
Dibenzo(a,h)anthracene	J	B05WV7	Continuing calibration
All analytes	J	B05WV7	Matrix spike recovery
Phenol	J	B05WV7	MS/MSD RPD out of specification

Project: WESTINGHOUSE-HA	NFORD			1												•					,
Laboratory: TMA				1																	
Case:	SDG:	B05WW6		1																	
Sample Number	1	B05WW		B05WW	7	Τ						Γ		· · · · ·				T		1	
Location		116-H-2		116-H-		 	_	 		· · · · · · · · · · · · · · · · · · ·				 				} -		├──	
Remarks		DUP	_	DUP		 				 								 	_	1	
Sample Date		03/16/92		03/16/92	2				-	 				 				 		 	
Extraction Date '		03/26/92		03/26/92	2	 		 	****	 				 				 		 	
Analysis Date		04/15/92	2	04/15/92	2	1								<u> </u>		 		 		 	
Semivolatile Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	330	340			U				1	1			 						1	<u> </u>	+
bis(2-Chloroethyl)ether	330	340	Ü	340	U						ļ —		\vdash					<u> </u>	<u> </u>		1-
2-Chlorophenol	330	340		340	Ū								_					<u> </u>		1	\top
1,3-Dichlorobenzene	330	340		340		1	Ī		1		1	1	Γ		1		Ī		П	1	1
1,4-Dichlorobenzene	330	340		340		1		 	1	1	Г	l		1	\Box	<u> </u>	1	<u> </u>	\top		T
Benzyl Alcohol	330	340		340	Ū	T					\vdash	l		<u> </u>					1		\top
1,2-Dichlorobenzene	330	340	Ü	340	U				1		1				1	<u> </u>		-	1		1
2-Methylphenol	330	340	U	340	Ū		 		1	 							1				1
bis(2-Chloroisopropyl)Ether	330	340	Ū	340	U	1			T		İ		<u> </u>	<u> </u>	1		\vdash	<u> </u>	1		
4-Methylphenol	330	340		340	Ū				1		\vdash		_								1-
N-Nitroso-di-n-propylamine	330	340	U	340	U				1								\vdash	 	1		1
Hexachloroethane	330	340	U	340	Ū		1			1			i	<u> </u>	1				†		1-
Nitrobenzene	330	340	U	340	U					-					1				1		+-
Isophorone	330	340			Ū				1								1				1
2-Nitrophenol	330	340		340	Ū		\sqcap		1		1						T	<u> </u>	1		+-
2,4-Dimethylphenol	330	340		340	U		Т	i —	1		\Box			i					 		
Benzoic acid	1700	1700			Ū				i T				_				İ	<u> </u>	1		1
bis(2-Chloroethoxy)methane	330	340		340	Ū														Г		1
2,4-Dichlorophenol	330	340			U		1		\Box	· · · · · · · · · · · · · · · · · · ·	1	· · · · · · · · · · · · · · · · · · ·	_		T -						
1,2,4-Trichlorobenzene	330	340	Ū	340	U		1		1				_	<u> </u>				<u> </u>	1		1-
Naphthalene	330	340	U	340	Ū				 										T		1
4-Chloroaniline	330		U	340	υ					i										-	1
Hexachlorobutadiene	330	340		340	Ū										 						1
4-Chloro-3-methylphenol	330	340	U		Ū				1						 			 	1		T
2-Methylnaphthalene	330	340	U	340	U								i		\vdash				1		+-
Hexachiorocyclopentadiene	330	,	Ü	340	U								 						 	·	1
2,4,6-Trichlorophenol	330	1	U	340	Ū		1						_	<u> </u>	1		1		\vdash		1-
2,4,5-Trichlorophenol	1700		U		Ū			·	1			l	_		1				\vdash		+
2-Chloronaphthalene	_330		U	340		<u> </u>				 	\Box		 		\top		Т	<u> </u>	1		+
2-Nitroaniline	1700	1700	Ü	1700	U		 		1	_			_		1			<u> </u>	<u> </u>		1
Dimethylphthalate	330	340	U	340		Ţ	\top	Γ''''	1	(· · · · · ·			 		\Box				+
Acenaphthylene	330	340	U	340	U					1	T -		\Box		1				\vdash		1
														717.2.							

Project: WESTINGHOUSE-HA	NFORD			7																	
Laboratory: TMA				†																	
Case:	SDG:	B05WW6	3	1																	
Sample Number		B05WW		B05WW	7			T				T		<u>T</u>						1	
Location	1	116-H-	2	116-H-2	2					_			_	 			····			 .	
Remarks	1	DUP		DUP								1		1						1	
Sample Date	Ì	03/16/9	2	03/16/92	<u> </u>							 			******						
Extraction Date	i	03/26/9	2	03/26/92										ĺ			-	1			
Analysis Date		04/15/9	2	04/15/92	?	i								İ							
Semivolatile Compound	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	TQ
3-Nitroaniline	1700	1700	U	1700	U		1				1		_		1				1	1	1
Acenaphthene	330	340	U	340	U		\top				1								1		
2,4-Dinitrophenol	1700	1700	U	1700	U	<u> </u>					1						1			i i	1
4-Nitrophenol	1700	1700	U	1700	U						1				1		1		1		1
Dibenzofuran	330	340	U	340	U				\Box		1	 				l	1	ļ	1	 	
2,4-Dinitrotoluene	330	340	U	340	U		1						├	<u> </u>	1		1		1		~
2,6-Dinitrotoluene	330	340	U	340	U												1	1		1	
Diethylphthalate	330	340	Ū	340	U	l					1	1			1		1		1		1
4-Chlorophenyl-phenyl ether	330	340	U	340	U				1			<u> </u>			1		1	1	1	1	1
Fluorene	330	340	U	340	U				\vdash		\vdash	i -	<u> </u>		$\uparrow -$		1	 	1		1
4-Nitroaniline	1700	1700	U	1700	U						1	<u> </u>	1		\top		1		†		\top
4,6-Dinitro-2-methylphenol	1700	1700	U	1700	U								Ì				i –	1	1	-	1
N-Nitrosodiphenylamine	330	340		340	Ü										1	<u> </u>	1		İ	٠ -	\top
4-Bromophenyl-phenylether	330	340	U	340	U		Τ		\Box		1		i T	İ		i	1	i	1	0.4	1
Hexachlorobenzene	330	340		340	Ū				\vdash		1				1		1			1	
Pentachlorophenol	1700	1700		1700	U						1				1		T		T		1
Phenanthrene	330	340		340	U												1		1		1
Anthracene	330	340		340	U										1	1	1		1	Ì	\top
Di-n-butylphthalate	330	340		340	U		T				T		Π					·	T		7
Fluoranthene	330	340	U	340	Ü								T		\top		1				1
Pyrene	330	340	U	340	U		1								1		1				
Butylbenzylphthalate	330	340		1	U												1				1
3,3'-Dichlorobenzidine	330	690		690	U						1	1		Ì					1		\top
Benz(a)anthracene	330	340	U	340	Ü						1			ĺ					1		7
bis(2-Ethylhexyl)Phthalate	330	340	U	340	Ü		\top				1	· · · · · · · · · · · · · · · · · · ·	i —	Ì			1	1			
Chrysene	330	340	U	340	U												1			1	1
Di-n-octylphthalate	330	340			U				I^-			<u> </u>								1	1
Benzo(b)fluoranthene	330	340	JU	340	U			1							T		1		1-		1-
Benzo(k)fluoranthene	330	340		340	U						1	Ì	Ι		\top			1	1	1	1
Benzo(a)pyrene	330	340		340	U	1									1	1	1				1
indeno(1,2,3-cd)pyrene	330	340		340	U	1							<u> </u>		i		1		1	1	1
Dibenz(a,h)anthracene	330	340	U	340	U	1	1				1		\Box		1		T		1	1	1
Benzo(g,h,i)perylene	330	340	U	340	Ü				1		\top		1		1	 	1	 	1		1

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WW6	REVIEWER: SC			DAT	E; 10/26/	92	•	PAGE_1_OF_1_				
COMMENTS:												
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER			
SBLK0326S	Di-n-butylphthalate	100	J		ug/kg	500	1000	All	U			
						:						
						<u> </u>						
						· · ·						
	<u> </u>		<u> </u>									
			ļ									
	<u> </u>											

3-37

j. 🔞

DATA QUALIFICATION SUMMARY

		TCATION SUMMER.	
SDG: B05WW6	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1_
COMMENTS:		,	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Di-n-Butylphthalate	U	All	Lab blank contamination
	·		
		,	
		,	

(A)

9

WHC-SD-EN-TI-082, Rev. 0

WEL	L AND SAMPLE	INFORMATIO	ON .	SAMPLE LOCATION INFORMATION
SAMPLE LOCATION	SAMPLE NUMBER	MATRIX	DATE SAMPLED	PESTICIDES/PCBS
116-H-9	B05WN8 B05WN9 B05WP0	\$ \$ \$	2/26/92 2/27/92 2/27/92	4-5 4-5 4-5
116-H-3	B05WP1 B05WP5 B05WP7	s s w	3/04/92 3/05/92 3/05/92	4-5 4-9 4-9
116 - H-7	B05WT8 B05WT9 B05WV1 B05WV2 B05WV3 B05WV4	s s v s s	2/27/92 2/28/92 2/28/92 3/02/92 3/02/92 3/02/92	4-5 4-5 4-5 4-5 4-5 4-5
116-H-1	B05WV6 B05WV7 B05WV8 B05WV9 B05WW0 B05WW4	ន ន ន ន ន ន	3/09/92 3/09/92 3/09/92 3/10/92 3/10/92 3/11/92	4-13 4-16 4-13 4-13 4-13 4-13
116-H-2	B05WW5 B05WW6 B05WW7	s s s	3/13/92 3/16/92 3/16/92	4-13 4-17 4-17

○

().

W W

4.0 PESTICIDE AND PCB DATA VALIDATION

4.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B05WN8 B05WP5 B05WV6 B05WV7 B05WW6

4.2 HOLDING TIMES

. 100

2

4

Analytical holding times were assessed to ascertain whether the holding time requirements for pesticide/PCB analyses were met by the laboratory. Westinghouse Hanford procedures require that samples be extracted within seven days of collection and analyzed within 40 days of extraction (WHC 1991a).

Based upon Westinghouse Hanford data validation procedures, the seven day extraction holding times were exceeded for the following samples:

- Sample numbers B05WN8, B05WN9, B05WP0, B05WT8, B05WT9, B05WV2, B05WV3 and B05WV4 in SDG No. B05WN8.
- Sample number B05WP5 in SDG No. B05WP5.
- Sample numbers B05WV6, B05WV8, B05WV9, B05WW0 and B05WW4 in SDG No. B05WV6.

These samples were flagged "J" and are considered to be estimated. However, these samples meet the requirements of EPA Data Validation Guidelines, which requires a fourteen day extraction holding time.

The holding time requirements for all of the other data packages were met.

4.2.1 Instrument Performance and Calibrations

Instrument performance was assessed to ensure that adequate chromatographic resolution and instrument sensitivity were achieved by the gas chromatographic system.

The specific criteria for acceptable instrument performance are outlined in EPA guidelines (EPA 1988a and 1988b), including

the evaluation and qualification procedures that may be performed on the analytical results.

During the quality assurance review, all indicators for acceptable instrument performance were verified. The criteria established by CLP protocols were met and the results are acceptable, except as noted.

Instrument calibration is performed to ensure that the chromatographic system is capable of producing acceptable and reliable analytical data. The initial and continuing calibrations are to be performed according to procedures established by CLP protocols. An initial calibration is performed prior to sample analysis to establish the linear range of the system, including a demonstration that all target compounds can be detected. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

4.2.2 Initial Calibrations

100

7.7

The laboratory performed an initial multipoint calibration for the four compounds specified at the concentrations required by CLP protocols. The linearity of the initial calibration is established when the percent RSD or the calibration factors is less than or equal to 10 percent.

All initial calibration results were acceptable.

4.2.3 Calibration Verification

The criteria for acceptable continuing calibrations requires that the calibration factors for all target compounds have a percent difference of less than or equal to 15 percent of the average calibration factor calculated for the associated initial calibration standard. The 15 percent difference value is required for results calculated using the chromatographic column which is used for quantitative purposes. In addition, the percent difference of the calibration factors calculated for the chromatographic column that is used for confirmation must be less than or equal to 20 percent.

The calibration verification results did not meet the QC results for the compounds listed below. All associated samples were qualified as estimates (J).

All calibration verification results were acceptable.

4.3 BLANKS

Method blank and field blank analyses are performed to determine the extent of laboratory or field contamination of samples. No contaminants should be present in the blanks. Analytical results for analytes present in any sample at less than 5 times the concentration of that analyte found in associated blanks should be qualified as non-detects.

There were no compounds of concern detected in the method or field blanks.

4.4 ACCURACY

(Tr

150

Accuracy was assessed by evaluating the recoveries of the surrogate compounds and the matrix spike recoveries calculated for the sample analyses.

4.4.1 Matrix Spike Recovery

Matrix spike analyses are performed in duplicate using six compounds specified by CLP protocols. The recoveries for the six compounds must be within the acceptable quality control limits established by CLP protocols.

All matrix spike/matrix spike duplicate recoveries results were acceptable.

4.4.2 Surrogate Recovery

All surrogate recovery results were acceptable.

4.5 PRECISION

Precision is expressed by the RPD between the recoveries of the matrix spike and the matrix spike duplicate analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed by using unspiked duplicate analyses.

The matrix spike/matrix spike duplicate RPDs were acceptable.

4.6 COMPOUND IDENTIFICATION AND QUANTITATION

The data were evaluated to confirm the positive concentrations and to investigate the possibility of false negatives in all other data. Confirmation of possible false

negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., detection limits, instrument linearity, analytical recovery). These factors were found to be in control, and the data are acceptable.

All compound identifications and quantitation results are acceptable.

4.6.1 Reported Quantitation Limits

Compound quantitations and reported detection limits were recalculated and verified for a minimum of 20 percent of the samples in each case to ensure that they were accurate and are consistent with CLP requirements (EPA 1988a). The reported detection limits must be in accordance with the CRQLs specified in the applicable CLP statement of work.

The compound quantitations and the CRQLs reported were calculated correctly and were acceptable.

4.7 OVERALL ASSESSMENT AND SUMMARY

والميار

10

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts in baseline stability, retention time shifts, extraneous peaks, or sensitivity) were found during the quality assurance review.

In general, the pesticide/PCB data presented in this report met the protocol-specified QA/QC requirements. The sampling to extraction holding time was exceeded, though not grossly exceeded for several samples. As required by Westinghouse Hanford protocols, all results for these samples were flagged "J" and are considered estimates only. All other results are acceptable and usable for all purposes.

PESTICIDE/PCB ORGANIC ANALYSIS, SOIL MATRIX, (ug/Kg)

Project: WESTINGHOU		1																	
Laboratory: TMA		***************************************		1															
Case:	SDG:	B05WN8		1															
Sample Number		B05WN8	3	B05WN9)	B05WP0)	B05WP1		B05WT8	3	B05WT9		B05WV2	:	B05WV3	3	B05WV4	-
Location		116-H-9	-	116-H-9)	116-H-9	9	116-H-	3	116-H-	7	116-H-7	7	116-H-7	,	116-H-7	,	116-H-7	7
Remarks								1								<u> </u>			
Sample Date		02/26/92		02/27/92		02/27/92		03/04/92	-	02/27/92		02/28/92		03/02/92		03/02/92	?	03/02/92	2
Extraction Date		03/11/92		03/11/92		03/11/92		03/11/92		03/13/92		03/11/92		03/11/92		03/11/92		03/11/92	
Analysis Date		03/20/92		03/20/92		03/20/92		03/20/92	2	03/20/92		03/20/92		03/20/92		03/20/92		03/20/92	
Pesticide/PCB	CRQL		Q		Q		Q		Q	Result	Q				a				Q
alpha-BHC	1.7		IJ	8.0	IJ	7.8	IJ	7.9	U	8.4	UJ	1	W		IJ		IJ	8.0	UJ
beta-BHC	1.7	8.1	UJ	8.0	UJ	7.8	เม	7.9	U	8.4	UJ		J		IJ	1	UJ	8.0	UJ
delta-BHC	1.7	8.1	UJ	8.0	UJ	7.8	IJ	7.9	U	8.4	UJ		IJ		W		UJ	8.0	บม
gamma-BHC (Lindane)	1.7	8.1	UJ	8.0	ÚJ	7.8	ÚĴ	7.9	U	8.4	เกา		IJ		3		IJ	8.0	UJ
Heptachlor	1,7	8.1	IJ	8.0	UJ	7.8	IJ	7.9	U	8.4	UJ		UJ		J		IJ	8.0	UJ
Aldrin	1,7	8.1	IJ	8.0	IJ	7.8	IJ	7.9	U	8.4	UJ		UJ		IJ		IJ	8.0	UJ
Heptachlor epoxide	1.7	8.1	บป	8.0	IJ	7.8	ŲJ	7.9	U	8.4	UJ		UJ		ŲΊ		UJ	8.0	IJ
Endosulfan I	1.7	8.1	UJ	8.0	UJ	7.8	UJ	7.9	U	8.4	บป		IJ		ÜĴ		ໜ	8.0	UJ
Dieldrin	3.3	16	UJ	16	UJ	16	ŲΊ	16	U	17	UJ		IJ		IJ		IJ	16	IJ
4,4'-DDE	3.3	16	ΠJ	16	UJ	16	UJ	16	Ü	17	UJ		UJ		UJ		IJ	16	ÜĴ
Endrin	3.3	16	UJ	16	UJ	16	ՄՍ	16	U	17	ÜJ	I .	IJ		UJ		IJ	16	IJ
Endosulfan li	3.3	16	เกา	16	UJ	16	υJ	16	U	17	บป	1	3		บัว		IJ	16	UJ
4,4'-DDD	3.3	16	บป	16	IJ	16	ŰĴ	16	Ü	17	บป		3		ŲĴ		เก	16	UJ
Endosulfan sulfate	3.3	16	UJ	16	IJ	16	เกา	16	U	17	W	l	IJ		IJ		ÜĴ	16	เก
4,4'-DDT	3.3	16	IJ	16	UJ	16	UJ	16	U	17	UJ	17	IJ		UJ	I	IJ	16	บป
Methoxychlor	17.0	81	ΠJ	80	IJ	78	ÛΊ	79	U	84	บป		3		UJ		เกา	80	เกา
Endrin Ketone	3.3	16	UJ	16	IJ	16	UJ	16	U	17	บบ	17	3	17	UJ		UJ	16	เกา
alpha-Chlordane	1.7	81	IJ	80	IJ	78	UJ	79	U	84	UJ		IJ	84	IJ		IJ	80	IJ
gamma-Chlordane	1.7	81	UJ	80	IJ	78	ΩJ	79	Ü	84	ΠΊ		3	84	ŰĴ	1	IJ	80	IJ
Тохарћеле	170.0	160	UJ	160	IJ	160	ŪĴ	160	U	170	UJ	170	3		UJ		UJ	160	UJ
Arochior-1016	33.0	81	IJ	80	UJ	78	UJ	79	U	84	UJ		IJ	84	บป		UJ	80	UJ
Arochlor-1221	33.0	81	UJ	80	IJ	78	UJ	79	Ú	84	บป		IJ	84	บป	1	UJ	80	W
Arochlor-1232	67.0	81	IJ	80	IJ	78	UJ	79	U	84	nı	83	3	84	IJ		UJ	80	W
Arochlor-1242	33.0	81	IJ	80	IJ	78	UJ	79	U	84	IJ	83	IJ	84	IJ	1	UJ	08	UJ
Arochlor-1248	33.0	81	UJ	80	υJ	78	υJ	79	U	84	UJ	83	3	84	UJ		υJ	80	UJ
Arochlor-1254	33.0	160	UJ	160	UJ	160	UJ	160	U	170	UJ	170	S	170	UJ	170	UJ	160	UJ
Arochlor-1260	33.0	160	UJ	160	UJ	160	M	160	U	170	UJ	170	3	170	ÜĴ	170	เม	160	UJ

~1
3
ш
Ü
ŧ
Ø
D
ī
İπ
تزة
7
5
Ė
Ţ.
Ţ
O
82
N
•
7
Rej
9
•
,
_
-

Project: WESTINGHOU	SE-HAI	NFORD		}																	
Laboratory: TMA	<u> </u>			1																	
Case	SDG:	B05WN8		1																	
Sample Number	···	B05WV1	<u> </u>			T		1				<u> </u>		1				Γ		1	•
Location		116-H-7	7					<u> </u>				1		1							
Remarks		EB						ĺ							·						
Sample Date		2/28/92							····					i				1			\neg
Extraction Date		3/06/92								1		· · · · · · · · · · · · · · · · · · ·		1		· · · · · · · · · · · · · · · · · · ·		i			\neg
Analysis Date		3/20/92										İ						i		· · · · · · · · · · · · · · · · · · ·	
Pesticide/PCB	CRQL.	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
alpha-BHC	0.05	0.05	U								Ī						1	<u> </u>	İ	ĺ	\Box
beta-BHC	0.05	0.05	U				T		ļ		1						\top				
delta-BHC	0.05	0.05									1			T	1		1				\Box
gamma-BHC (Lindane)	0.05	0.05									\top										
Heptchlor	0.05	0.05																		,	
Aldrin	0.05	0.05			T																\Box
Heptachlor epoxide	0.05	0.05			Ī.,					1			1							i	
Endosulfan I	0.05	0.05							П				Π				1				\sqcap
Dieldrin	0.10	0.10																			7
4,4'-DDE	0.10	0.10													Ī						
Endrin	0.10	0.10					L		l												
Endosulfan II	0.10	0.10																		, -	
4,4'-DDD	0.10	0.10									l		l								\prod
Endosulfan sulfate	0.10	0.10																			
4,4'-DDT	0.10	0.10					Ĺ		L												
Methoxychlor	0.50	0.50									Ĭ		<u> </u>								
Endrin Ketone	0.10	0.10			<u> </u>												<u> </u>				
Endrin Aldehyde	0.10	0.10																			
aipha-Chiordane	0.05	0.50																			
gamma-Chlordane	0.05	0.50							<u> </u>				l								
Toxaphene	5.00	1.00											<u> </u>		l]				
Arochlor-1016	1.00	0.50															T		T		
Arochlor-1221	1.00	0.50																			
Arochlor-1232	2.00	0.50																			
Arochlor-1242	1.00	0.50																			\prod
Arochlor-1248	1.00	0.50																			
Arochlor-1254	1.00	1.00																			
Arochlor-1260	1.00	1.00	Ü												1			1			T

4-7

HOLDING TIME SUMMARY

SDG: B05WN8	REVIEWER:	SC		DATE: 10/26/	/92	PAGE_	L_OF_1_
COMMENTS:							· · · · · · · · · · · · · · · · · · ·
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
B05WN8	Pesticide/PCB	2/26/92	3/11/92	3/20/92	7	40	J
B05WN9	Pesticide/PCB	2/27/92	3/11/92	3/20/92	7	40	J
B05WP0	Pesticide/PCB	2/27/92	3/11/92	3/20/92	7	40	J
B05WT9	Pesticide/PCB	2/28/92	3/11/92	3/20/92	7	40	J
B05WV2	Pesticide/PCB	3/2/92	3/11/92	3/20/92	7	40	J
B05WV3	Pesticide/PCB	3/2/92	3/11/92	3/20/92	7	40	J
B05WV4	Pesticide/PCB	3/2/92	3/11/92	3/20/92	7	40	J -
B05WT8	Pesticide/PCB	2/27/92	3/13/92	3/20/92	7	40	J
<u>.</u>							*
							,

DATA QUALIFICATION SUMMARY

SDG. DOGTY	DECEMBER 00	DAME 40/25/05	
SDG: B05WN8	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1
COMMENTS:	1	1	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
All Pesticide/PCB compounds	J	B05WN8, B05WN9, B05WP0, B05WT9, B05WV2, B05WV3, B05WV4, B05WT8	Extraction holding time
		÷	
		•	

£7/3

WHC-SD-EN-TI-082,
Rev.
0

Project: WESTINGHOUS	E-HAN	IFORD		1																	
Laboratory: TMA				İ																	
	SDG: B	05WP5																			
Sample Number		B05WP5	5			1						1		Γ		1			•		
Location		116-H-3	3			<u> </u>		1		1											
Remarks								1													
Sample Date		3/05/92																			
Extraction Date		3/18/92											-								\neg
Analysis Date		3/20/92																			
	CRQL	Result		Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
alpha-BHC	1.7	8.0	UJ																		
beta-BHC	1.7		UJ]			I						l		
delta-BHC	1.7	8.0	UJ																		
gamma-BHC (Lindane)	1.7	8.0	UJ				L						l								
Heptachlor	1.7	8.0	UJ																		
Aldrin	1.7	8.0	UJ		Ī]								
Heptachlor epoxide	1.7	8.0	UJ					ľ		l	I				<u> </u>						
Endosulfan I	1.7	8.0	UJ		l																
Dieldrin	3.3	16.0	UJ			I		l	<u> </u>		l		L								
4,4'-DDE	3.3	16.0	UJ		l	Ĺ		<u> </u>												[$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$
Endrin	3.3	16.0	UJ								l				<u> </u>	l			<u> </u>		
Endosulfan II	3.3	16.0	ŲJ			<u> </u>	<u> </u>			<u> </u>	Ĺ			<u> </u>	<u> </u>						
4,4'-DDD	3.3	16.0	UJ				<u></u>		l	<u> </u>]								
Endosulfan sulfate	3.3	16.0	W		<u> </u>											<u> </u>	ļ				
4,4'-DDT	3.3	16.0	IJ								l		ļ.						<u> </u>		
Methoxychlor	17.0	80.0	IJ				<u>L.</u>		<u> </u>		<u> </u>			·	1				<u> </u>		
Endrin Ketone	3.3	16.0	UJ				L_			<u> </u>	l		<u> </u>		1		<u> </u>				
alpha-Chlordane	1.7	80.0	UJ						1	l	l	ļ	1.	l							
gamma-Chlordane	1.7	80.0	UJ					l		l	<u> </u>		l]						
Toxaphene	170.0	160.0	UJ																		
Arochlor-1016	33.0	80.0	UJ												<u>L.</u>		<u> </u>				
Arochlor-1221	33.0	80.0	UJ					<u> </u>												1	
Arochior-1232	67.0	80.0																			
Arochlor-1242	33.0	80.0	UJ																	<u> </u>	
Arochlor-1248	33.0	80.0	UJ									1						,			
Arochior-1254	33.0	160.0	UJ]							
Arochlor-1260	33.0	160.0	บ่า			1	<u> </u>	<u> </u>		<u> </u>	<u>L</u>	<u> </u>		<u> </u>			1	<u> </u>			

4
ï
Η
0

Project: WESTINGHOUS	SE-HAN	JEORD	-	1																	
Laboratory: TMA	<u> </u>	11 0110		╣																	
Case:	SDG: E	305WP5		1																	
Sample Number	1	B05WP7	7	 		1		1		T		Τ		ĭ ·		T		T			\neg
Location		116-H-		 			_	 				 	-	 						<u> </u>	
Remarks		EB		 		<u> </u>								 		 				<u> </u>	[
Sample Date		3/05/92			-		-		-	 		 	~								-
Extraction Date		3/12/92													-	 					
Analysis Date		3/20/92																· · · · · · · · · · · · · · · · · · ·			$\overline{}$
Pesticide/PCB	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
alpha-BHC	0.05	0.05	U				1	İ	1				1		 - -		1		 		
beta-BHC	0.05	0.05	U		1			1	1		1		1				1		 		1
delta-BHC	0.05	0.05	U									<u> </u>	1		 	 	1		 		\vdash
gamma-BHC (Lindane)	0.05	0.05	U		1				· · · · · ·		1					<u> </u>	1				1
Heptchlor	0.05	0.05	U										1		 				-		+
Aldrin	0.05	0.05	U						1		1		1			 	 		\vdash		1
Heptachlor epoxide	0.05	0.05	U								1	 	1		 			<u> </u>			\vdash
Endosulfan I	0.05	0.05	U			· · · · · · · · · · · · · · · · · · ·					1		T				 				1-1
Dieldrin	0.10	0.10	U										1				T				\vdash
4,4'-DDE	0.10	0.10	U	1	Ī					<u> </u>	1						1			ž	1
Endrin	0.10	0.10	U		1										 		1				\Box
Endosulfan II	0.10	0.10	U								1									π,	1
4,4'-DDD	0.10	0.10			Г			İ	1		\vdash				_						\Box
Endosulfan sulfate	0.10	0.10					_				\top	i	1					<u> </u>		ъ.	
4,4'-DDT	0.10	0.10					П	i			\Box	i	1								
Methoxychlor	0.50	0.50							<u> </u>				1				†		 		
Endrin Ketone	0.10	0.10			l							i									\Box
alpha-Chlordane	0.05	0.50																			
gamma-Chlordane	0.05	0.50			Ī.,				Ī		1	l'	\Box	<u> </u>							П
Toxaphene	5.00	1.00											1	,		· · · · · ·					
Arochlor-1016	1.00	0.50															Ì		ļ		\Box
Arochlor-1221	1.00	0.50									1							<u> </u>			\Box
Arochlor-1232	2.00	0.50												·					\vdash		
Arochlor-1242	1.00	0.50					Ĭ				П								\Box		
Arochlor-1248	1.00	0.50	U				<u> </u>														\Box
Arochlor-1254	1.00	1.00	I																		
Arochlor-1260	1.00	1.00	Ü																		1

HOLDING TIME SUMMARY

SDG: B05WP5	REVIEWER:	MY		DATE: 2/03/93	3	PAGE_1	_OF_1_
COMMENTS:							
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER
B05WP5	Pest/PCB	3/05/92	3/18/92	3/20/92	7	40	J
							:
-							

DATA QUALIFICATION SUMMARY

		· · · · · · · · · · · · · · · · · · ·	
SDG: B05WP5	REVIEWER: MY	DATE: 2/03/93	PAGE_1_OF_1_
COMMENTS:		·	
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON '
All analytes	J	B05WP5	Exceeded holding time
			The state of the s

Project: WESTINGHOUS	SE-HAN	VFORD		1																	
Laboratory: TMA	ase: SDG: B05WV6																				
Case:	SDG: I	B05WV6		1																	
Sample Number		B05WV6	3	B05WV8	3	B05WV9)	B05WW	0	B05WW	4	B05WW	5	<u> </u>		1		T		1	
Location		116-H-	1	116-H-	1	116-H-1	l	116-H-	1	116-H-	ī	116-H-2	2							 	\dashv
Remarks		SPLIT																 			
Sample Date		03/09/92		03/09/92	2	03/10/92	}	03/10/92	2	03/11/92	2	03/13/92	2						•		-
Extraction Date		03/21/92		03/21/92		03/21/92	?	03/21/92	2	03/21/92	2	03/21/92	?								
Analysis Date		04/01/92		04/02/92		04/02/92		04/01/92	2	04/02/92	2	04/02/92	•								
Pesticide/PCB	CRQL		Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	TQ
alpha-BHC	1.7		UJ	8.4	IJ	8.2	IJ	8.4	UJ	8.0	UJ	8.2	U		1		 	-			\Box
beta-BHC	1.7		IJ	8.4	IJ		UJ	8.4	IJ	8.0	UJ	8.2	Ü						1	 	
delta-BHC	1.7		UJ		UJ	8.2	UJ		UJ		UJ	8.2	Ū								1
gamma-BHC (Lindane)	1.7		UJ		UJ		UJ		W	8.0	UJ	8.2	U								
Heptachlor	1.7		IJ		IJ	8.2	5		IJ		บม	8.2	J								
Aldrin	1.7		UJ	8.4	IJ	8.2	UJ		UJ		UJ	8.2	U								\Box
Heptachlor epoxide	1.7		IJ	8.4	υJ		UJ		UJ		UJ	8.2	Ū						<u> </u>		
Endosulfan I	1.7		UJ		บั		UJ		UJ		UJ	8.2	حا								\Box
Dieldrin	3.3		IJ	17		16			ΩJ		UJ	16	υ			l					
4,4'-DDE	3.3	17		17					ÜĴ		UJ	16	U								
Endrin	3.3	17			IJ	16			ŲJ	16			U								
Endosulfan II	3.3	17		17		16			W	16			U			<u> </u>			\Box		
4,4'-DDD	3.3		UJ		IJ	16			IJ	16			Ü						i		11
Endosulfan sulfate	3.3		UJ		IJ	16			UJ		IJ		U								\Box
4,4'-DDT	3.3		UJ	17	S	16			IJ		UJ		Ü								
Methoxychlor	17.0		IJ	84	UJ	82		84			UJ		U								П
Endrin Ketone	3.3		UJ	17	IJ	16			UJ		UJ		U								
alpha-Chlordane	1.7		UJ	84	UJ	82			ÜJ		IJ		U		1						
gamma-Chlordane	1.7		UJ		UJ	82			UJ		ΩĴ		U				<u> </u>				
Toxaphene	170.0		UJ		IJ	160			IJ		UJ	160	U								
Arochlor-1016	33.0	84	ÚJ		IJ	82			IJ		UJ		U						1		\Box
Arochlor-1221	33.0	84	IJ		3	82			IJ		υJ		U				Γ.				\Box
Arochlor-1232	67.0	84	IJ		3	82			IJ	80		82	Ū								\Box
Arochlor-1242	33.0	84	IJ		5	82			IJ		IJ		U		1	l		,			\sqcap
Arochior-1248	33.0	84	UJ	84	IJ	82	IJ		ŲĴ		UJ	82	U					:			П
Arochior-1254	33.0		UJ		IJ	160	ŰĴ		3	160	UJ		U				<u> </u>	1			
Arochlor-1260	33.0	170	IJ	170	ບັນ	160	IJ	170	IJ	160	บป	160	U					<u> </u>			

HOLDING TIME SUMMARY

SDG: B05WV6	REVIEWER: S	SC	<u></u>	DATE: 10/26/	92	PAGE_1_OF_1_					
COMMENTS:											
FIELD SAMPLE ID	ANALYSIS TYPE	DATE SAMPLED	DATE PREPARED	DATE ANALYZED	PREP. HOLDING TIME, DAYS	ANALYSIS HOLDING TIME, DAYS	QUALIFIER				
B05WV6	Pesticide/PCB	3/9/92	3/21/92	4/1/92	7	40	J				
B05WV8	Pesticide/PCB	3/9/92	3/21/92	4/2/92	7	40	J				
B05WV9	Pesticide/PCB	3/10/92	3/21/92	4/2/92	7	40	J				
B05WW0	Pesticide/PCB	3/11/92	3/21/92	4/2/92	7	40	J				
B05WW4	Pesticide/PCB	3/11/92	3/21/92	4/2/92	7	40	J				
		•									
- 											
							:				

DATA QUALIFICATION SUMMARY

			D. CD. 4 CD. 4
SDG: B05WV6	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON - "
All Pesticide/PCB compounds	J	All except B05WW5	Extraction holding time
	<u> </u>		
		•	
		,	

33.0

33.0

Arochlor-1254

Arochlor-1260

310 U

310 U

Project: WESTINGHOUSE-HANFORD

LIGHT MESTINGHOU	SE-HAI	NHURD		1																	
Laboratory: Roy F. West	on			1																	
Case	SDG:	B05WV7		1																	
Sample Number		B05WV	7	·		1		T		T'''		1		Т		T				т	
Location		116-H-	1			 		† 		 		 		 		 		 		 	
Remarks	•	SPLIT		 -		 		 		 -				 				ļ		 	
Sample Date		03/09/92	2			 		· · · · · · · · · · · · · · · · · · ·		 		 		 				 		 	
Extraction Date	77	03/16/92	2			1				 		 		 		 		 		 	
Analysis Date		03/31/92	2			 		1		 				 				 		 	
Pesticide/PCB	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	IQ	Result	Q
alpha-BHC	1.7	16	U		 		1-		 		Ť			1.10001	 ~	ricount	-	T TOOLIL	- ~	Headit	 Q
beta-BHC	1.7	16	U				 		 	 	1—	 	+		┼──		 	 	+-	 	
delta-BHC	1.7	16	U		1					 	1		1		十一		 	 	╁	 	╀
gamma-BHC (Lindane)	1.7	16	U				-		1	 	1		\vdash	 	┼──		╁		一	 	
Heptachior	1.7	16	U		1		⇈			 	1		 	 	 		\vdash	 	+		╫
Aldrin	1.7	16	U						-		1		1	 	 		-	 	+	 	╫
Heptachlor epoxide	1.7	16	U	i			\vdash					 	 	 	ļ		 	<u> </u>	+		┼─
Endosulfan I	1.7	16	U		<u> </u>			<u> </u>	T		1			 	 		\vdash		一	 	
Dieldrin	3.3	31	U				П				 		 	 	i –		╫		 		₩
4,4'-DDE	3.3		U						\vdash		T	l	 		 		┢		+	 	
Endrin	3.3		U		П		<u> </u>		1		1		!	 -			-		╁		╆
Endosulfan II	3.3		U		l —			· ·									-		 		
4,4'-DDD	3.3	31	U						 		1		 						╁─┤		-
Endosulfan sulfate	3.3		U		-				\Box		T		 				_		╁		
4,4'-DDT	3.3		U			ĺ	"		1		1		-	<u> </u>					1-		\vdash
Methoxychlor	17.0	160	U					T		1							\vdash		 	 	
Endrin Ketone	3.3	31	U									·····		 -		* ****			1		
alpha-Chlordane	1.7	160	U					1					 						1		
gamma-Chlordane	1.7	160									\vdash					· · · · · · · · · · · · · · · · · · ·	\vdash		 		
Toxaphene	170.0	310	U	i .					1										1		
Arochlor-1016	33.0	160																	 		
Arochlor-1221	33.0	160	U																1-		$\vdash \vdash \vdash$
Arochlor-1232	67.0	160					<u> </u>				1										
Arochior-1242	33.0	160						<u> </u>											\vdash		-1
Arochior-1248	33.0	160	U																	ļ —————	

PESTICIDE/PCB ORGANIC ANALYSIS, SOIL MATRIX, (ug/Kg)

Page__1__ of__1__

WHC-SD-EN-TI-082, Rev. 0

In-t WEATHOUGH		15055		7																	
Project: WESTINGHOUS	SE-HAN	NEORD		-																	
Laboratory: TMA	ODO.	DATIANA		4																	
Case: Sample Number	SDG: I	B05WW6		DOCIMAN				1								,				,	~~~~
Location		B05WW		B05WW				ļ		ļ				ļ		ļ				<u> </u>]
<u> </u>		116-H-	4	116-H-2	<u>. </u>	ļ				ļ		ļ		ļ				<u> </u>		ļ	
Remarks	 	DUP		DUP	·····	ļ				ļ				ļ							
Sample Date		03/16/92		03/16/92		ļ		ļ		ļ				<u> </u>		<u> </u>					
Extraction Date		03/26/92		03/26/92										<u> </u>				<u> </u>		<u> </u>	
Analysis Date		04/02/92		04/02/92			1	ļ	T	<u> </u>			., <u></u>	<u> </u>				<u> </u>			
Pesticide/PCB				1	-	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
alpha-BHC	1.7	8.2	U	8.2		<u> </u>	<u> </u>		<u> </u>					<u> </u>	<u> </u>					<u> </u>	\perp
beta-BHC	1.7	8.2		8.2			L		<u> </u>		<u> </u>		<u> </u>								l
delta-BHC	1.7	8.2	1	8.2			<u> </u>		<u> </u>								ļ				
gamma-BHC (Lindane)		8.2		8.2				<u> </u>	<u></u>				<u></u>		<u> </u>				Ι		
Heptchlor	1.7	8.2		8.2			<u> </u>										l				
Aldrin	1.7	8.2	1	8.2							1										\prod
Heptachlor epoxide	1.7	8.2		8.2			<u>L</u>		<u>L</u>				<u> </u>								\Box
Endosulfan I	1.7	8.2		8.2		l					1										
Dieldrin	3.3	16			U				<u> </u>												
4,4'-DDE	3.3	16		16															1		\Box
Endrin	3.3	16		16						ļ	l										
Endosulfan li	3.3	16		16										I							
4,4'-DDD	3.3	16		16																	\Box
Endosulfan sulfate	3.3	16		16			ĺ							T	T				Π		
4,4'-DDT	3.3	16		16						,	Ι		T				П			-7	\Box
Methoxychlor	17.0	82		82									1		1						\Box
Endrin Ketone	3.3	16		16											1						
alpha-Chlordane	1.7	82		82	U						1				\top				\Box		
gamma-Chlordane	1.7	82	U	82	Ū				I		1						-				\Box
Toxaphene	170.0	160	U	160	Ū						1								 		\Box
Arochlor-1016	33.0	82	U	82	Ū								T								\Box
Arochlor-1221	33.0	82	U	82	Ū	 	 						T	 	1		\vdash		\vdash		$\vdash \vdash$
Arochlor-1232	67.0	82	U		U	i	\Box		1	1	1		T		1				Т		1
Arochlor-1242	33.0	82	Ū	82	Ū						1		 	<u> </u>				,	 		\sqcap
Arochior~1248	33.0	82		82				 	1				1		1			<u> </u>			 -
Arochlor-1254	33.0	160			U								T		1						\vdash
Arochlor-1260	33.0	160	Ü	160	Ū	l							 		\vdash		\vdash				\vdash

DUP = DUPLICATE

WHC-SD-EN-TI-082, Rev. 0

WEL	L AND SAMPLE	INFORMATIO	ON .	SAMPLE LOCATION INFORMATION
SAMPLE LOCATION	SAMPLE NUMBER	MATRIX	DATE SAMPLED	INORGANICS
116-H-9	B05WN8 B05WN9 B05WP0	ននេ	2/26/92 2/27/92 2/27/92	5-10 5-10 5-10
116-H-3	B05WP1 B05WP5 B05WP7	s s w	3/04/92 3/05/92 3/05/92	5-14 5-19 5-20
116-H-7	B05WT8 B05WT9 B05WV1 B05WV2 B05WV3 B05WV4	S S S S	2/27/92 2/28/92 2/28/92 3/02/92 3/02/92 3/02/92	5-10 5-14 5-15 5-14 5-14 5-14
116-H-1	B05WV5 B05WV6 B05WV7 B05WV8 B05WV9 B05WW0 B05WW4	8 8 8 8 8 8 8 8	3/09/92 3/09/92 3/09/92 3/09/92 3/10/92 3/10/92 3/11/92	5-19 5-25 5-30 5-25 5-25 5-25 5-25
116-H-2	B05WW5 B05WW6 B05WW7	s s s	3/13/92 3/16/92 3/16/92	5-25 5-35 5-35

t T

.. 🔿

£"\\$

5.0 INORGANIC DATA VALIDATION

5.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B05WN8 B05WP5 B05WV6 B05WV7 B05WW6 B05WP1

5.2 HOLDING TIMES

9

Analytical holding times for ICP metals, GFAA metals, and CVAA mercury analyses were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: samples must be analyzed within twenty-eight days for mercury, 14 days for cyanide, and within six months for all other metals.

Holding time requirements for all analytes in all data packages were met for this report.

5.3 INSTRUMENT PERFORMANCE AND CALIBRATIONS

Performance of specific instrument quality assurance and quality control procedures, including deficiencies noted during the quality assurance review, are outlined below.

Three calibration standards and a blank were analyzed for arsenic, selenium, thallium, and lead by GFAA. The correlation coefficient of a least squares linear regression met the requirements for calibration in all cases.

Up to five calibration standards and a blank were analyzed for mercury by CVAA. The correlation coefficient of a least squares linear regression met the requirements for calibration.

At least one standard and a blank were analyzed by ICP for all other elements.

The above calibrations were each immediately verified with an ICV standard and a calibration blank. The ICV was prepared from a source independent of the calibration standards, at a mid-calibration range concentration. The ICV percent recovery must fall within the control limits of 90 to 110 percent for metals analyzed by ICP and GFAA, and 80 to 120 percent for

mercury. Calibration linearity near the detection limit was verified with a standard prepared at a concentration near the CRDL.

The ICVs met the recommended control limits for all samples.

The calibrations were subsequently verified at regular intervals using a CCV standard. The control windows for percent recovery of CCV standards are the same as the ICV windows described above.

The CCVs met the recommended control limits in all cases.

5.3.1 ICP Calibration

.__

1

17

1

An ICS is analyzed at the beginning and end of each ICP sample run to verify the laboratory interelement and background correction factors. Results for the ICS solution must fall within the control limit of ±20 percent of the true value.

A five-fold serial dilution is required for all elements analyzed by ICP whose concentrations are greater than the linear range. The subsequent concentrations of the reanalysis are compared with the original analysis. The concentration values must agree within a percent difference (%D) of 10 percent.

The ICS has been analyzed at the proper frequency and all ICSAB solution percent recovery values fell within the control limit.

5.3.2 Atomic Absorption Calibrations

Duplicate injections are required for all GFAA analyses. The duplicate injections establish the precision of the individual analytical determinations. For sample concentrations greater than the CRDL, duplicate injections must agree within ±20 percent RSD.

All duplicate injection quality control requirements were acceptable.

5.3.3 Cyanide Analysis Calibrations

Cyanide analysis was performed by mid-distillation under Method 335.2 CLP-M (semi-automated spectrophotometric). The detection limit for the semi-automated colorimetric method is approximately 10 ug/L.

The cyanide as hydrocyanic acid (HCN) is released from cyanide complexes by means of mid-reflux-distillation operation

and absorbed in a scrubber containing sodium hydroxide solution. The cyanide ion in the absorbing solution is then determined colorimetrically.

All results fell within the acceptable limits.

5.4 BLANKS

 \cdot

O

.0

(A)

M

Samples with digestate concentrations (in ug/L) of less than five times (<5x) the highest amount found in any of the associated blanks have had their associated values qualified as non-detected (U). Samples with concentrations of greater than five times (>5x) the highest amount found in any of the associated blanks do not require qualification.

Due to the presence of laboratory blank contamination the following sample was flagged "U" for aluminum:

Sample number B05WP7 in SDG No. B05WP5.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for antimony:

- Sample number B05WP7 in SDG No. B05WP5.
- All samples in SDG No. B05WV6.
- All samples in SDG No. B05WW6.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for arsenic:

- Sample numbers B05WN8, B05WN9 and B05WP0 in SDG No. B05WN8.
- Sample numbers B05WV9, B05WW0, B05WW4 and B05WW5 in SDG No. B05WV6.
- All samples in SDG No. B05WW6.

Due to the presence of laboratory blank contamination the following sample was flagged "U" for barium:

Sample number B05WP7 in SDG No. B05WP5.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for beryllium:

- Sample numbers B05WP5, B05WP7 and B05WV5 in SDG No. B05WP5.
- All samples in SDG No. B05WV6.
- All samples in SDG No. B05WW6.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for cadmium:

- All samples in SDG No. B05WN8.
- Sample numbers B05WP5, B05WP7 and B05WV5 in SDG No. B05WP5.
- All samples in SDG No. B05WW6.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for copper:

Sample numbers B05WP7 and B05WV5 in SDG No. B05WP5.

Due to the presence of laboratory blank contamination the following sample was flagged "U" for iron:

Sample number B05WP7 in SDG No. B05WP5.

Due to the presence of laboratory blank contamination the following sample was flagged "U" for lead:

• Sample number B05WP7 in SDG No. B05WP5.

Due to the presence of laboratory blank contamination the following samples were flagged "U" for silver:

- All samples in SDG No. B05WV6.
- All samples in SDG No. B05WW6.

Due to the presence of laboratory blank contamination the following sample was flagged "U" for sodium:

Sample number B05WV7 in SDG No. B05WV7.

Due to the presence of laboratory blank contamination the following sample was flagged "U" for vanadium:

• Sample number B05WP7 in SDG No. B05WP5.

All other laboratory blank results are acceptable.

5.5 ACCURACY

CAL

~_^_

A (3

P 1

[~)

1

5.5.1 Matrix Spike Recovery

Matrix spike analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix

spike recoveries must generally fall within the range of 75 to 125 percent.

Matrix spike recoveries fell outside the quality control requirement for antimony in SDG Nos. B05WN8, B05WV6, B05WW6, sample numbers B05WP5 and B05WV5 in SDG No. B05WP5 and all soil samples in SDG No. B05WP1. All associated samples were qualified as estimates "J".

Matrix spike recoveries fell outside the quality control requirement for arsenic in SDG No. B05WV7. All associated samples were qualified as estimates "J".

Matrix spike recoveries fell outside the quality control requirement for lead in SDG No. B05WV7 and sample numbers B05WP5 and B05WV5 in SDG No. B05WP5. All associated samples were qualified as estimates "J".

Matrix spike recoveries fell outside the quality control requirement for manganese in sample numbers B05WP5 and B05WV5 in SDG No. B05WP5. All associated samples were qualified as estimates "J".

Matrix spike recoveries fell outside the quality control requirement for selenium in SDG Nos. B05WV6, B05WV7 and all soil samples in SDG No. B05WP1. All associated samples were qualified as estimates "J".

The matrix spike recovery result for selenium in sample numbers B05WP5 and B05WV5 in SDG No. B05WP5 grossly exceeded the the QC limits. All associated results were rejected and flagged "R".

Matrix spike recoveries fell outside the quality control requirement for silver in SDG Nos. B05WN8 and B05WV7. All associated samples were qualified as estimates "J".

Matrix spike recoveries fell outside the quality control requirement for thallium in SDG No. B05WN8. All associated samples were qualified as estimates "J".

5.5.2 Laboratory Control Sample Recovery

£ \1

149

6

The LCS monitors the overall performance of the analysis, including the sample preparation. An LCS should be digested or distilled and analyzed with every group of samples which have been prepared together. The performance criteria for solid LCS samples are established through interlaboratory studies coordinated by a certifying agency (e.g., EPA or an independent commercial supplier).

One solid LCS was digested and analyzed for each of the cases in this report that contained soil samples. The results were compared against the control windows established by the laboratory and were found to be acceptable.

The LCS recovery for arsenic was above QC requirements for SDG No. B05WV6. All associated arsenic results were flagged as estimates ("J"). All other LCS results were acceptable.

One liquid LCS was digested and analyzed for each of the cases in this report that contained water samples. The results were compared against the control limit of 80-120% percent as required by the USEPA CLP SOW 3/90 protocol and found to be acceptable.

5.6 PRECISION

(V)

0

5.6.1 Laboratory Duplicate Samples

The laboratory duplicate results measures the precision of the method by measuring a second aliquot of the sample that is treated the same way as the original.

The laboratory duplicate results fell outside the established QC limits for calcium in soil samples in SDG No. B05WP1 and all samples in SDG No. B05WW6. All associated samples were qualified as estimates "J".

The laboratory duplicate results fell outside the established QC limits for chromium in soil samples in SDG No. B05WP1, all samples in SDG No. B05WW6, and sample number B05WV6 in SDG No. B05WV6. All associated samples were qualified as estimates "J".

The laboratory duplicate results fell outside the established QC limits for lead in sample number B05WV6 in SDG No. B05WV6 and sample numbers B05WP5 and B05WV5 in SDG. No. B05WP5. All associated samples were qualified as estimates "J".

The laboratory duplicate results fell outside the established QC limits for magnesium in SDG No. B05WW6. All associated samples were qualified as estimates "J".

The laboratory duplicate results fell outside the established QC limits for manganese in SDG No. B05WW6. All associated samples were qualified as estimates "J".

The laboratory duplicate results fell outside the established QC limits for nickel in SDG No. B05WW6. All associated samples were qualified as estimates "J".

All other laboratory duplicate results were acceptable.

5.6.2 ICP Serial Dilution

The ICP serial dilution is used to determine whether significant physical or chemical interferences exist due to sample matrix. If sample concentration is \geq 50 times the IDL for an analyte and the %D is outside the control limits the associated data must be qualified.

The ICP serial dilution results did not meet the QC limits for the following results:

- Zinc in all soil samples in SDG No. B05WP1 and all samples in SDG No. B05WV7.
 - All associated results were qualified as estimates "J".
 - All other ICP serial dilution results were acceptable.

5.7 FURNACE AA QUALITY CONTROL

In

.)

~

المراجع

. ...

1

The post-digestion analytical spike is analyzed to determine the extent of interference in the digestate matrix. When the results of the analytical spike analyses exceeds the control window of 85 to 115 percent recovery and the absorbance of the sample is greater than fifty percent of the analytical spike absorbance, then the sample must be reanalyzed using the MSA. The duplicate injections and the analytical spike recoveries establish the precision and accuracy of the individual GFAA determinations.

5.7.1 Duplicate Injections

All duplicate injection quality control requirements were met.

5.7.2 Analytical Spike Recoveries

For all samples whose analytical spike results were outside the 85 to 115 percent control limit, but whose absorbances are less than 50 percent of the analytical spike absorbance, the samples were flagged as an estimate "J".

The analytical spike recovery fell outside the established OC limits for arsenic in:

Sample number B05WV1 in SDG No. B05WP1.

The analytical spike recovery fell outside the established QC limits for lead in:

- Sample number B05WP0 in SDG No. B05WN8.
- Sample numbers B05WP1 and B05WV1 in SDG No. B05WP1.

The analytical spike recovery fell outside the established QC limits for selenium in :

- Sample numbers B05WN9 and B05WP0 in SDG No. B05WN8.
- Sample numbers B05WT9, B05WV3 and B05WV4 in SDG No. B05WP1.
- Sample numbers B05WP5, B05WP7 and B05WV5 in SDG No. B05WP5.
- Sample numbers B05WV8, B05WW4 and B05WW5 in SDG No. B05WV6.
- Sample number B05WV7 in SDG No. B05WV7.

٢

 ^{n}D

The analytical spike recovery fell outside the established OC limits for thallium in:

Sample number B05WP0 in SDG No. B05WN8.

Due to an analytical spike recovery equal to zero, the selenium result in sample number B05WT8 in SDG No. B05WN8 was rejected and flagged "R".

5.8 ANALYTE QUANTITATION AND DETECTION LIMITS

Twenty percent of sample results and reported detection limits were recalculated to ensure that the reported results were accurate. Raw data were examined for anomalies, transcription errors, and reduction errors.

The reviewer verified that the results and detection limits fell within the linear range of the instrument.

5.9 OVERALL ASSESSMENT AND SUMMARY

All samples were analyzed and reported under the 1990 CLP protocol (EPA 1990). Several inconsistencies and deviations from the protocol were observed primarily with data supplied by Roy F. Weston. They are as follows:

For ICAP analysis two sets of IDLs are included in each data package, one for instrument IC1 and one for instrument IC3. The raw data does not specify which ICAP instrument was used for the analysis run however results are being calculated and reported from both sets of IDLs as well as IDLs which do not appear on any

form provided. This affects results reported below the CRDL on Forms 1, 3, 5, 6 and 9. IDLs are also required to be performed and reported on a quarterly basis. This to is not always being done and many of the IDL results are past the quarterly deadline. The mercury IDL on form 10 is reported at 0.04 ug/L while the rest of the report uses an IDL of 0.01 ug/L to calculate the results. The IDL (form 10) needs to be updated and the laboratory must clearly specify which IDLs are used to calculate results.

CCV and CCB are required to be analyzed immediately after the ICV and ICB. ICAP, Mercury and Cyanide do not follow this protocol. For ICAP analysis a CCV and CCB were run after the initial interference checks and CRI. This is incorrect since the ICSA/AB and CRII are considered analytical samples and according to the CLP protocol a CCV and CCB must be run prior to any analytical samples. For mercury and cyanide the CCV and CCB were analyzed for after the first ten samples. Refer to Sections E-11 paragraph 2b and E-12 paragraph 4a of the USEPA CLP SOW 3/90 protocol.

Laboratory Control Sample (LCS) Solid: The solid LCSs digested and analyzed for in this report could not be verified as soils. Digestion logbook pages provided in the report show an LCS being digested at 2 ml of the ICV. According to the USEPA CLP SOW 390 protocol Section E-19 paragraph 8 the ICV can only be used for the aqueous LCS. The LCS-soil must be an actual solid sample provided by the EPA or a certified agent. A percent recovery range of 80-120% was used to calculate the acceptance limits for the solid LCS in this report, but are valid for the aqueous LCS only.

Significant figures: Results reported on Forms 5A and 6, matrix spike and duplicate results respectively, should be brought out to a full four decimal places and not rounded to one significant digit with three zeros added. Refer to Section B-27 of the USEPA CLP SOW 3/90.

All raw data must be labelled with the EPA (client) ID number. To date all reports have been labelled with the laboratory ID number only. Refer to Section B-10 of the USEPA CLP SOW 3/90.

Internal chain of custodies are not properly labelled with the sample IDs. Chain of custodies which are provided can not be verified as those belonging to the samples in the report. Refer to Sections F-2 paragraph 1.2 and F-3 paragraph 1.4 of the USEPA CLP SOW 3/90.

All other data is usable for all purposes.

m.

 \sim

HW
ů
8
ď
될
Ŀ
ij
Ö
8
•
Re.
₹
_
0

Project: WESTING	IOUSE-I	IANFORI	<u> </u>]																	
Laboratory: TMA				1																	
Case:	SDG: B	05WN8		1																	
Sample Number		B05WN8	3	B05WN9)	B05WP0)	B05WT8	3	T				1		<u> </u>		1			
Location		116-H-9	9	116-H-9)	116-H-	9	116-H-	7				_	1							
Remarks											*******	<u> </u>									
Sample Date		02/26/92	2	02/27/92	?	02/27/92	2	02/27/92													
Inorganic Analytes	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200	74400		9340		5010		9070						<u> </u>			1	 			1
Antimony	60		UJ	5.90	บป	6.20	UJ	6.40	IJ												1
Arsenic	10	2.10	U	3.20	U	1.60	U	47.00									\top				1-
Barium	200	672.00		72.50		73.50		94.90	Γ		Ī	Ι.		1			Т	1			1
Beryllium	5	4.70		0.25		0.26		0.37									Π	<u> </u>			\top
Cadmium	5	10.60	U	0.75	U	1.10	U	0.75	Ū								1				_
Calcium	5000	79000		6320		5150		5220	Γ				Ţ		Ţ -		1		Π		T
Chromium	10	114.00		11.20		8.50		12.30		<u> </u>		1									1
Cobait	50	86.40		13.40		6.90		9.20									Î				1
Copper	25	195.00		34.90		13.10		17.00	Γ.										1	-	1
Iron	100	184000		24200	Ī	13400		19000													\top
Lead	3	7.90		4.20		2.60	บู	540.00									1				
Magnesium	5000	50000		6700		3640		4630]	T				1
Manganese	15	3050		280.00		214.00		325.00									1				\top
Mercury	0.2	0.10	Ü	0.09	Ü	0.09	U	0.09	U.								1				
Nickel	40	132.00		28.00		8.00		11.80													
Potassium	5000	13000		600.00		916.00		1720													1.
Selenium	5	4.00	Ü	0.76	IJ	0.79	UJ	4.20	R								1	<u> </u>			\top
Silver	10	12.90	UJ	0.95	IJ	0.99	IJ	1.00	IJ				Г								\vdash
Sodium	5000	2010		721.00		271.00		182.00				1									1
Thallium	10	0.59	UJ	0.57	UJ	0.59	IJ	0.63	IJ				1	1			1	<u> </u>			\top
Vanadium	50	389.00		46.70		36.80		40.00		<u> </u>	<u> </u>	T	1				1				\top
Zinc	20	430.00		42.20		32.80	<u> </u>	53.10				 		 					T		T
Cyanide	10	5.10	U	5.10	U	4.90	U	5.20	U		<u> </u>	1		1		<u> </u>			\Box		_
	· · · · · · · · · · · · · · · · · · ·					-									<u> </u>		Ι		1	· · · · · · · · · · · · · · · · · · ·	+
-												<u> </u>		$\overline{}$			1	 	П		†
							<u> </u>	<u> </u>										 			+
<u></u>	1	<u> </u>			<u> </u>		Г		\Box		\Box	l	\vdash		-		1	l	\vdash		+
											_						_		\vdash		\vdash
		<u> </u>	·		·	·	·	··		·		L		·		·		·	٠		

ij L

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WN8	REVIEWER: LM			DAT	E: 10/27/	92		PAGE_1_OF_1				
COMMENTS:												
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER			
ССВ	Arsenic	4.2			ug/L	21.0	42.0	B05WP0, B05WN8, B05WN9	U			
ССВ	Cadmium	3.2			ug/L	16.0	32.0	All	Ŭ			
		<u> </u>										
					-							
									-			
			<u> </u>				1					
,												

ACCURACY DATA SUMMARY

SDG: B05WN8	REVIEWER: LM	DATE: 10/27/92	PAG	PAGE_1_OF_1_					
COMMENTS:									
SAMPLE ID	COMPOUND	% RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED					
B05WN9S	Antimony	40.2	All	1					
B05WN9S	Silver	67.1	All	1					
B05WN9S	Thallium	129.7	Ali	J					
B05WN9A	Selenium	45.0	B05WN9	J					
B05WP0A	Lead	134.1	B05WP0	J					
B05WP0A	Selenium	43.9	B05WP0	J					
B05WP0A	Thallium	117.5	B05WP0	J					
B05WT8A	Selenium	0.0	B05WT8	R					
				,					

WHC-SD-EN-TI-082, Rev. 0

♂べ

5

<u>م</u>

		h 2 H 2	T
SDG: B05WN8	REVIEWÉR: LM	DATE: 10/27/92	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON .
Antimony	U	B05WP0, B05WN8, B05WN9	Lab blank
Cadmium	U	All	Lab blank
Antimony	1	All	Matrix spike outside control limits
Silver	J	All	Matrix spike outside control limits
Selenium	J	B05WN9	Analytical spike recovery
Lead	J	B05WP0	Analytical spike recovery
Selenium	J	B05WP0	Analytical spike recovery
Thallium	J	B05WP0	Analytical spike recovery
Selenium	R	B05WT8	Analytical spike recovery

_
S
兴
r,
LV.
H
ĭ
Ė.
2
T
Ĥ
H
1
0
8
Ñ
ж
ᅏ
IJ
۲.
•
_

Project: WESTINGH	IOUSE-H	ANFORE		1															
Laboratory: TMA				1															
	SDG: B	05WP1		1															
Sample Number		B05WP1		B05WT9)	B05WV2	2	B05WV3	}	B05WV4	1								
Location		116-H-3	3	116-H-7	7	116-H-7	7	116-H-7	7	116-H-7	7								
Remarks								ĺ											
Sample Date		03/04/92		02/28/92		03/02/92		03/02/92	}	03/02/92	?								
	CRQL		Q		Q		Q		Q		Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200	5200		5330		5520	L.	6400		5210									Т
Antimony	60	5.90			IJ	6.10	IJ	6.90	UJ	5.90									\top
Arsenic	10	1.30	U	6.20		2.80		1.80	U	1.60	U				Ī		-		T
Barium	200	42.50		67.20		64.70		62.10		43.80			T						1
Beryllium	5	0.22		0.24	J	0.25	1	0.25	U	0.21	U								T
Cadmium	5	0.78	U	0.72	U	0.78	U	0.85	U	0.52	U		Ī	İ			1		\top
Calcium	5000	4990	J	8620	J	7110	J	7220	J	3280	J		1				1		1
Chromium	10	10.50	J	14.60	-	28.30	J	21.60	J	13.10	J		1	i		i T	Т		1
Cobalt	50	9.20	U	7.50	J	7.10	υ	8.50	U	6.80	Ū			i					\top
Copper	25	12.90		17.60		23.40		16.60		13.50									\top
Iron	100	15900		14800		14400		15700	П	13400	1			<u> </u>					1
Lead	3	2.10	J	10.90		5.90		3.80		2.40						<u> </u>			1
Magnesium	5000	3690		3520		3780		4550		3340			1		1				\top
Manganese	15	231.00		249.00		245.00		262.00		220.00									1
Mercury	0.2	0.09	U	0.45		1.10		0.09	U	0.09	U					1	 		\top
Nickel	40	9.60		7.30	Ü	7.60	U	12.70		7.60				i		1	1		1
Potassium	5000	739.00		692.00		778.00		927.00		583.00							1		1
Selenium	5	3.80	ŪJ	4.50	IJ	0.81	IJ	4.20	UJ	0.80	UJ		\Box	1			1		1
Silver	10	0.96	U	1.10	U	0.98	υ	1.10	U	0.95	U		\vdash	<u> </u>			1		1
Sodium	5000	403.00		291.00		233.00		283.00		405.00				<u> </u>			1		1
Thallium	10	0.38	Ū	0.45	U	0.40	U	0.42	U	0.40	U							 	1
Vanadium	50	47.10		32.70		31.70		36.80		24.70						1		—	1-
Zinc	20	39.10	J	56.20	J	83.10	J	44.30	J	40.30	J	<u> </u>					İ		1
Cyanide	10	5.10			υ		υ		U	4.70							1		+
) .			Г					l		····		······	 	 	1	 		1	1
			<u> </u>				\vdash		Г				T		T		t	 	\top
		,	 				 				T	<u> </u>	\vdash		T	† · · · · ·	\top	 	1-
											T		 		1		1	 	+-
			_				 -	i	 		 		\vdash		\vdash	1		<u> </u>	

)HW
Υ
22
ĭ
ğ
Ī
H
Ï
-082
N
•
ŭ
₽ev
• `
_

USE-H	ANFORE)]																	
DG: B	05WP1																			
	B05WV1																		1	
	116-H-7	7																		
	EB																			
			Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
					L]						<u> </u>						
		UJ			<u> </u>		<u> </u>													
		J																		
200																				
5					<u> </u>	<u> </u>		<u> </u>		L									<u> </u>	
																l				
5000								<u> </u>]							
10]		<u> </u>				<u> </u>	L					
50		U																		
25]												
100	35.00	U																		
3		j						I				J		Ī		I				
5000																				\prod
15							l													
0.2																				
40						Ĺ		l		1									l	
5000	76.00	U																	1	\prod
5	4.00	UJ												T						\Box
10	5.00	U											l							\Box
5000	210.00									П										\Box
10	2.00	U								T				1						
50	3.00	U						1		1										
20	11.00	IJ				Г		1		1				1						
10	10.00	U							i	1	1	1	1		<u> </u>	1				11
										1	<u> </u>									
						1						1				Π		\vdash	i	
		<u> </u>	<u> </u>		1	П		Τ	i	T				T			,	Π	<u> </u>	\top
										1		1		1				1	1	
				1	 			İ				T		1				1		\Box
-	BQL 200 60 10 50 500 50 10 5000 10 5000 50 20 20	DG: B05WP1 B05WV1 116-H-7 EB 2/28/92 RQL Result 200 66.00 60 31.00 10 3.40 200 1.00 5 1.00 5 1.00 500 92.00 10 2.00 50 3.00 25 7.00 100 35.00 3 2.30 5000 69.00 15 1.00 0.2 0.20 40 4.00 5000 76.00 5 4.00 10 5.00 5000 210.00 10 2.00 50 3.00 20 11.00	B05WV1 116-H-7 EB 2/28/92 RQL Result Q 200 66.00 U 60 31.00 U 5000 92.00 U 5000 69.00 U 5000 76.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 210.00 U 5000 U U 5000 U U 5000 U U 5000 U U U U U U U U U	DG: B05WP1 B05WV1	DG: B05WP1 B05WV1 116-H-7 EB 2/28/92 RQL. Result Q Result Q 200 66.00 U 60 31.00 UJ 10 3.40 J 200 1.00 U 5 1.00 U 5 1.00 U 5000 92.00 UJ 10 2.00 UJ 50 3.00 U 25 7.00 100 35.00 U 3 2.30 J 5000 69.00 U 15 1.00 U 5 1.00 U 5 7.00 U 10 35.00 U 3 2.30 J 5000 69.00 U 15 1.00 U 5 1.00 U 5 1.00 U 5 7.00 U 10 35.00 U 3 2.30 J 5000 69.00 U 15 1.00 U 5000 76.00 U 5000 76.00 U 5000 210.00 U 50 3.00 U 20 11.00 UJ	DG: B05WP1 B05WV1	DG: B05WP1 B05WV1	DG: B05WP1 B05WV1	DG: B05WP1	DG: B05WP1	DG: B05WP1 B05WV1	DG: B05WV1 116-H-7	DG: B05WP1 B05WV1	DG: B05WP1 B05WV1	DG: B05WP1	DG: B05WP1	DG: B05WP1 B05WV1	DG: B05WV1	DG: B05WV1	DG: B05WP1 116-H-7

ACCURACY DATA SUMMARY

SDG: B05WP1	REVIEWER: SC	DATE: 10/26/92	PAG	E_1_OF_1_				
COMMENTS:								
SAMPLE ID	COMPOUND	% RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED				
B05WV2	Antimony	56.3	All soil	1				
B05WV2	Selenium	49.6	All soil	J				
				,				
				,				

5-17

PRECISION DATA SUMMARY

SDG: B05WP1	REVIEWER: SC		DATE: 10/26/92		PAGE_1_OF_1_		
COMMENTS:							
COMPOUND		SAMPLE ID:	SAMPLE ID:	RPD	SAMPLES AFFECTED	QUALIFIER	
Chromium	· · · · · · · · · · · · · · · · · · ·	B05WV2	B05WV2D	37.1	All soil	J	
Calcium		B05WV2	B05WV2D	55.3	All soil	J	
Zinc		B05WV2L	B05WV2	11.2	All soil	J	
						4 .	
							
					-		
		<u> </u>		ļ	-		
						• .	
						**	
				ļ			
						•	
				ļ			

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

SDG: B05WP1	REVIEWER: SC	DATE: 10/26/92	PAGE_1_OF_1_						
COMMENTS:									
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON						
Antimony	J	All soil	Matrix spike						
Selenium	J	All soil	Matrix spike						
Calcium	J	All soil	Lab duplicate						
Chromium	J	All soil	Lab duplicate						
Selenium	J	B05WV2 .	MSA						
Zinc	J	All soil	ICP serial						
Selenium	J	B05WT9, B05WV3, B05WV4	GFAA QC						
Arsenic	J	B05WV1	GFAA QC						
Lead	J	B05WP1, B05WV1	GFAA QC						
		·							

<u>.0</u>

M

○

~
臣
Ŷ.
32 132
Ĭ
Ħ
Į.
Ħ
80
Ñ
`_
Re
₹.
0
_

Project: WESTING	IOUSE-I	IANFORI)	1																	
Laboratory: TMA	·]																	
Case	SDG: B	05WP5]																	
Sample Number		B05WP5	,	B05WV5	,				*********												
Location		116-H-	3	116-H-2	2			Ī		•											
Remarks																					
Sample Date		03/05/92		03/09/92																	
	CRQL		Q		Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200	4280	乚	6710		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		1		<u> </u>		<u> </u>		$oxed{oxed}$
Antimony	60	1.60	IJ		IJ												<u></u>				
Arsenic	10	1.10		37.90		<u> </u>			<u> </u>		<u> </u>		<u> </u>		<u>L. </u>						
Barium	200	36.70		72.30			<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>			<u> </u>			
Beryllium	5		U	0.77							L.										
Cadmium	5	<u></u>	U		U		<u> </u>				<u> </u>				<u></u>						
Calcium	5000	4700		4650											<u> </u>						
Chromium	10	10.20		16.00			<u> </u>								<u> </u>		l				
Cobalt	50	7.00		7.70																	
Copper	25	22.50		19.00	U	<u> </u>	<u>l</u> .		<u> </u>	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>			<u> </u>			<u> </u>	
Iron	100	13500		15800				ļ					<u></u>	ļ							
Lead	3	8.60	J	187.00	J						<u> </u>		<u> </u>								
Magnesium	5000	3320		4120			<u> </u>	<u> </u>						l	<u> </u>					-	
Manganese	15	214.00	J	278.00				<u> </u>			<u> </u>	<u> </u>	<u> </u>				_				
Mercury	0.2	0.09	U	0.10	U																
Nickel	40	8.90		10.80					<u> </u>	l	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>			L	<u> </u>	
Potassium	5000	562.00		1320									1								
Selenium	5		R	4.10					l					l	<u> </u>				<u> </u>		
Silver	10	1	U	0.42	U				l			l	1		<u> </u>						
Sodium	5000	277.00		179.00					ĺ												
Thallium	10	0.57	U	0.61	U		<u>.</u>		Ĺ												
Vanadium	50	32.10	Ī	32.00							Ι										
Zinc	20	26.20		48.70																	
Cyanide	10	4.80	U	5.20	U																
			Ĺ.																		
							L.														

5-1

Project: WESTING	IOUSE-I	IANFORI	5_]																	
Laboratory: TMA																					
Case	SDG: B	05WP5																			
Sample Number		B05WP7	7																		
Location		116-H-3	3																		
Remarks		EB																			
Sample Date		03/05/92																			
Inorganic Analytes		Result		Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200		U																		
Antimony	60	8.00							Ī												
Arsenic	10	2.00	Ū		l																
Barium	200	4.00																			
Beryllium	5		U																		
Cadmium	5	1.40	U																		
Calcium	5000								Ĭ								Ī				
Chromium	10	4.00					L		Ī	·	Ι										
Cobalt	50	3.00																			
Copper	25	5.10													Ī						
Iron	100	11.00							Ī			[L						
Lead .	3	3.00			I				T												
Magnesium	5000	49.00				<u> </u>			<u> </u>										1		
Manganese	15	1.00							Ī												
Mercury	0.2		Ū_										<u> </u>				Ī				
Nickel	40	1	U					<u> </u>											<u></u>		
Potassium	5000	I —													<u> </u>						
Selenium	5	4.00	J		Ī																\Box
Silver	10	2.00	U				Π	1	T				Γ		Ī			Ī	1		\Box
Sodium	5000	705.00							T												
Thallium	10	3.00	Ū.																		
Vanadium	50	2.50	Ū				Π		1			T .			T	1			1	<u> </u>	
Zinc	20	4.00	U																		\Box
Cyanide	10	10.00	U																		
	1							1			Γ		T				T		Ī		
			Γ								<u> </u>								1		
									1		1					" "	1				TT
				<u> </u>	1		Г			<u> </u>		 	T	<u> </u>							
	<u> </u>		_				1					<u> </u>	1			1			1		\Box
L	J	· · · · · · · · · · · · · · · · · · ·		'	·	<u> </u>			<u> </u>	•	d		4	·			•	Leaven	•		

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WP5	REVIEWER: LM			DAT	E: 2/5/93			PAGE_1	_OF <u>_1</u> _
COMMENTS:									
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER
ССВ	Aluminum	30.5			ug/L	152.5	305.0	B05WP7	U
CCB	Barium	5.0			ug/L	25.0	50.0	B05WP7	ប
ССВ	Beryllium	2.1			ug/L	10.5	21.0	B05WP7, B05WP5, B05WV5	U
ССВ	Cadmium	2.2			ug/L	11.0	22.0	B05WP7, B05WP5, B05WV5	U
ССВ	Copper	18.9			ug/L	94.5	189.0	B05WP7, B05WV5	U
ICB	Iron	-27.9			ug/L	-139.5	-279.0	B05WP7	U
ССВ	Vanadium	3.2		<u> </u>	ug/L	16.0	32.0	B05WP7	U
PBW	Antimony	-12.3			ug/L	-61.5	-123.0	B05WP7	U
PBW	Lead	2.8			ug/L	14.0	28.0	B05WP7	U
	<u> </u>				[

5-22

ACCURACY DATA SUMMARY

SDG: B05WP5	REVIEWER: LM	DATE: 2/5/93	PAGE_	1_OF_1_
COMMENTS:				
SAMPLE ID	COMPOUND	% RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED
B05WP5S	Antimony	56.2	B05WP5,B05WV5	J
B05WP5S	Lead	-66.8	B05WP5,B05WV5	J
B05WP5S	Manganese	127.4	B05WP5,B05WV5	J
B05WP5S	Selenium	0.0	B05WP5,B05WV5	R
B05WP5A	Selenium	47.1	B05WP5	Ј
B05WP7A	Selenium	50.6	B05WP7	J
B05WV5A	Selenium	82.0	B05WV5	J
				-
, , , , , , , , , , , , , , , , , , ,				

HC-SD-EN-TI-082, Rev. 0

PRECISION DATA SUMMARY

SDG: B05WP5	REVIEWER: LM		DATE: 2/5/93		PAGE_1_OF	1
COMMENTS:						
COMPOUND		SAMPLE ID:	SAMPLE ID:	RPD	SAMPLES AFFECTED	QUALIFIER
Lead		B05WP5	B05WP5D	108.5	B05WP5, B05WV5	J
						<u>-</u>
	 					<u>-</u>

WHC-SD-EN-TI-082, Rev. 0

The state of the s

DATA QUALIFICATION SUMMARY

SDG: B05WP5	REVIEWER: LM	DATE: 2/5/93	PAGE 1 OF 1
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Aluminum	υ	B05WP5	Lab Blank
Antimony	U	B05WP7	Lab Blank
Barium	U	B05WP7	Lab Blank
Beryllium	U	B05WP5,B05WP7,B05WV5	Lab Blank
Cadmium	บ	B05WP5,B05WP7,B05WV5	Lab Blank
Copper	U	B05WP5,B05WP7	Lab Blank
Iron	ប	B05WP7	Lab Blank
Lead	U	B05WP7	Lab Blank
Vanadium	U	B05WP7	Lab Blank
Antimony	J	B05WP5,B05WV5	Matrix spike
Lead	J	B05WP5,B05WV5	Matrix spike
Manganese	J	B05WP5,B05WV5	Matrix spike
Selenium	R	B05WP5,B05WV5	Matrix spike
Selenium	J	B05WP5,B05WP7,B05WV5	GFAA spike
Lead	J	B05WP5,B05WV5	Duplicate RPD

n N

M

Project: WESTING	IOUSE-I	IANFORE)	1																	
Laboratory: TMA				1																	
Case:	SDG: B	05WV6		1 .																	
Sample Number		B05WV6	3	B05WV	3	B05WVS)	B05WW	0	B05WW	4	B05WW	5								
Location		116-H-1	1	116-H-	1	116-H-	1	116-H-1	1	116-H-1		116-H-2	2								
Remarks		SPLIT																			
Sample Date		03/09/92		03/09/92	2	03/10/92	2	03/10/92	?	03/11/92	?	03/13/92									
inorganic Analytes	CRQL.	Result	Q		Q	Result	Q	Result	Q		Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200	7500	L.,	5550		4800		5560		5720		4560									
Antimony	60	1.60	IJ	1.60	เกา	1.60		1	UJ		UJ	1.60			l		<u> </u>]
Arsenic	10	25.30	J	7.30	J	1.80	UJ		UJ	1.20	UJ		IJ								
Barium	200	74.50		59.60		52.90	<u> </u>	56.80		72.50		57.60									
Beryllium	5	0.56		0.55	.1	0.20		0.54			Ū	0.32									
Cadmium	5		U	0.20	U	0.20	U	1	U	0.20	U		U								
Calcium	5000	5520		4120		3180		4330		4520		7890			<u> </u>						
Chromium	10	18.90	J	17.90		29.60		12.50		10.60		7.60									
Cobalt	50	8.30	L	7.40		6.40		8.10		9.90	<u> </u>	6.90									
Copper	25	19.50		19.30		20.50		17.60		16.90		13.60									
Iron	100	16900		15800		12700		15000		18700		12800									
Lead	3	145.00	J	36.90	J	82.10	J		J	2.50	J	2.90	7								
Magnesium	5000	4630		4210]	3420		3940		4190		3330									
Manganese	15	292.00		252.00		215.00		242.00		266.00		211.00									
Mercury	0.2	0.10	U	0.09	U	0.09	U	0.09	U	0.10	Ų	0.09	U								
Nickel	40	11.50		9.30		7.90		9.60		9.00		7.40							Ĭ		
Potassium	5000	1270		707.00		509.00	Ī	575.00		946.00		766.00									
Selenium	5	0.82	IJ	0.83	UJ	4.10	IJ	4.20	IJ	0.77	IJ		IJ								
Silver	10	0.40	U	0.40	U	0.40	U	0.39	Ü	0.40	U	0.39	U								
Sodium	5000	207.00		205.00		249.00		399.00		480.00		277.00					Г		T		
Thallium	10	0.62	U	0.62	U	0.62	U	0.63	U	0.58	Ū	0.58	U						1		
Vanadium	50	35.80		32.90		32.80		38.20		51.00		32.20			П						\Box
Zinc	20	53.10		45.10		38.60	Π	30.50		39.10		31.70									
Cyanide	10	5.30	U	5.20	U	5.10	U	5.00	U	4.70	U	4.70	U								
			l		1											1					
			Ī																		
	1		l				1		[Γ.		Ī				
						l															

BLANK AND SAMPLE DATA SUMMARY

SDG: B05WV6	REVIEWER: I	M		DAT	E: 10/27/			PAGE_1_OF_1_			
COMMENTS:	KEVIEWER. 1	-J141		DAI	E. IUIZII	72		TAGE_I_O	·· <u>·</u>		
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X	10X	SAMPLES	QUALIFIER		
	COMCOUND	IGGOODI		1	OMID	RESULT	RESULT	AFFECTED	QUILDITION		
ICB	Antimony	8.6			ug/L	43.0	86.0	All	U		
ICB	Arsenic	2.0	_		ug/L	10.0	20.0	B05WV9, B05WW0, B05WW4, B05WW5	บ		
ССВ	Beryllium	1.1			ug/L	5.5	11.0	All	U		
ССВ	Silver	2.5			ug/L	12.5	25.0	All	U		
						, , , , , , , , , , , , , , , , , , ,					
			Ĺ								

ACCURACY DATA SUMMARY

SDG: B05WV6	REVIEWER: LM	DATE: 10/27/92	PAC	E 1_OF_1_
COMMENTS:				
SAMPLE ID	COMPOUND	% RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED
B05WV9S	Antimony	65.1	Ali	J
B05WV9S	Selenium	44.2	Ail	J
LCS	Arsenic	139.8	All	J
B05WV8A	Selenium	42.7	B05WV8	J
B05WW4A	Selenium	61.2	B05WW4	J
B05WW5A	Selenium	47.2	B05WW5	J
				i
•		•		•

5-2

PRECISION DATA SUMMARY

SDG: B05WV6	REVIEWER: LM		DATE: 10/27/92		PAGE_1_OF	· 1
COMMENTS:				·		
COMPOUND		SAMPLE ID:	SAMPLE ID:	RPD	SAMPLES AFFECTED	QUALIFIER
Lead		B05WV9	B05WV9D	178.9	All	J
Chromium		B05WV6	B05WV7	21.7	B05WV6	J
Lead		B05WV6	B05WV7	20.5	B05WV6	J
				ч		

5-2

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

SDG: B05WV6	REVIEWER: LM	DATE: 10/27/92	PAGE_1_OF_1_
COMMENTS:	*		
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Antimony	υ	All	Lab blank
Arsenic	υ	B05WV9, B05WW0, B05WW4, B05WW5	Lab blank
Beryllium	U	All	Lab blank
Silver	UJ	All	Lab blank
Antimony	UJ	All	Matrix spike recovery
Selenium	UJ	Ali	Matrix spike recovery
Arsenic	J	Ali	LCS out
Lead	J	Ali	Duplicate RPD out
Selenium	UJ	B05WV8, B05WW4, B05WW5	Analytical spike reocvery
Chromium	J	B05WV6	Split sample RPD out
Lead	J	B05WV6	Split sample RPD out

			•
	·	L	

~>

£
耳
Ċ
to.
Ë
ŢŢ
덛
7
ы
H
4
ĕ
N
넜
(i)
<
•
0

Project: WESTINGH	OUSE-H	ANFORE		1																	
Laboratory: Roy F. V				1																	
Case:	SDG: B	05WV7		1																	
Sample Number	· · · · · ·	B05WV7	7			T		T				<u> </u>		Ι .		T		<u> </u>		<u> </u>	—
Location		116-H-	ī													 					
Remarks		SPLIT							-							 				<u> </u>	
Sample Date	*	03/09/92	2					 		 		<u> </u>				 					
Inorganic Analytes	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200	6890						1									1		Ë		
Antimony	60	4.60	U					1					1				┪		 		+-
Arsenic	10	27.60	J		1		1	<u> </u>					\vdash	 			╁				+
Barium	200	66.00					<u> </u>		1		1		 			l	T				
Beryllium	5	0.46						· · · · · · · · · · · · · · · · · · ·				İ				-	 		 -		†
Cadmium	5	0.80	U				 		<u> </u>	-	 	1					\vdash			 -	
Calcium	5000	4960									 		<u> </u>		┢		1				\vdash
Chromium	10	23.50	J					1			\vdash	l	1			 	 	<u> </u>			\vdash
Cobalt	50	9.30				-					 				-	<u> </u>	1	 			1
Copper	25	11.80											<u> </u>				1		 		1
Iron	100	17900		-		1											┼┯				\vdash
Lead	3	118.00	J								i						 				+
Magnesium	5000	3930														<u> </u>	 				
Manganese	15	275.00									 		1		_		\vdash				
Mercury	0.2	0.05	Ū		\Box						1		<u> </u>		_		 				+-
Nickel	40	13.90							-	· · · · · ·					_	 -			-		1
Potassium	5000	1160					<u> </u>										 	~			+
Selenium	5	0.40	UJ				Т	7.7.	\vdash					····			\vdash			<u> </u>	
Silver	10	0.60	R					l							_		 				
Sodium	5000	249.00	υ				_										\vdash				
Thallium	10	0.40				<u> </u>						~~~	_				 				1
Vanadium	50	40.80							 		-			 			 				1-
Zinc	20	52.70	J	-		 			<u> </u>						\vdash		\vdash				1
Cyanide	10	0.50					\vdash		\vdash						-		╁				1-
			-				_	<u> </u>			-		-				\vdash				\vdash
						<u> </u>							\vdash	 		 	┼				1-
	·								\vdash		 				 					··· · · ·	1
					\vdash		_						\vdash								
																	1				$\vdash \vdash$
		<u> </u>		<u> </u>	<u> </u>	I	I	L	·	I	<u>. </u>	<u> </u>				l	Щ		L		

წ**-**3

WHC-SD-EN-TI-082, Rev. 0

BLANK AND SAMPLE DATA SUMMARY

				r					
SDG: B05WV7	REVIEWER: LM			DAT	E: 10/26/	92		PAGE_1	_OF <u>1</u> _
COMMENTS:									
SAMPLE ID	COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER
PBS	Sodium	842.6			ug/L	4213.0	8426.0	B05WV7	υ
			<u> </u>						

					·				
						,			

HC-SD-EN-TI-082, Rev.

ACCURACY DATA SUMMARY

SDG: B05WV7	REVIEWER: LM	DATE: 10/26/92	PAG	E 1 OF 1
COMMENTS:				
SAMPLE ID	COMPOUND	% RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED
B05WV7S	Arsenic	0.0	B05WV7	J
B05WV7S	Lead	760.0	B05WV7	J
B05WV7S	Selenium	72.0	B05WV7	J
B05WV7S	Silver	28.0	B05WV7	R
B05WV7A	Selenium	80.0	B05WV7	J
	*			

5-32

PRECISION DATA SUMMARY

SDG: B05WV7 RE	VIEWER: LM	DATE: 10/26/92		PAGE_1_OF_1_				
COMMENTS:								
COMPOUND	SAMPLE ID:	SAMPLE ID:	RPD	SAMPLES AFFECTED	QUALIFIER			
Zinc	B05WV7	B05WV7	20.2	B05WV7	J			
Chromium	B05WV7	B05WV6	21.7	B05WV7	J			
Lead	B05WV7	B05WV6	20.5	B05WV7	J			
								
· · · · · · · · · · · · · · · · · · ·								

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

CDC. DOSTER	I		
SDG: B05WV7	REVIEWER: LM	DATE: 10/26/92	PAGE_1_OF_1
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
Sodium	U	B05WV7	Lab blank
Arsenic	J	B05WV7	Matrix spike recovery
Lead	J	B05WV7	Matrix spike recovery
Selenium	1	B05WV7	Matrix spike recovery
Silver	R	B05WV7	Matrix spike recovery
Zinc	J	B05WV7	Serial dilution
Selenium	J	B05WV7	Analytical spike recovery
Chromium	J	B05WV7	Split sample RPD out
Lead	J	B05WV7	Split sample RPD out
	·		

(*)

Project: WESTINGH	OUSE-H	ANFORE)	7																	
Laboratory: TMA			_	1																	
Case:	SDG: B	05WW6	*******	7																	
Sample Number	1	B05WW	6	B05WW	7	T						T**		1		1		T		,	
Location	·	116-H-		116-H-		 		<u> </u>		 		 						 		 	
Remarks		DUP		DUP						 		 						 		ļ	
Sample Date		03/16/92	<u> </u>	03/16/92	?			 		 		 		 				 		<u> </u>	
Inorganic Analytes	CRQL	Result	Q			Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	200	5640		4900			 		 	1	1-	1.0001	 ~	rioduit	13	ricount	- 3	T Tessure	14	1 ICOUR	4
Antimony	60	1.60	UJ	1.60	ÜJ		\vdash	<u> </u>	1	 	1		 	 	┼	 	1	 	+-	 	┼╌
Arsenic	10	2.00	U	2.10	U		T	-	1	 	 -	 	1		+		╁┈	 	┪	 	┼
Barium	200	55.30	J	69.90	J	<u> </u>	1		\top	1	\vdash		 	 	 			 	+		╁┈
Beryllium	5	0.35	U	1	U	1	1	1	1	1	1		+		1	 	╁	 	┼	 	
Cadmium	5	0.20	U	0.19	U		1			 	1		+	 	╁		╁─	 	\vdash	 -	
Calcium	5000	11000	J	9920	j		<u> </u>			 	1		十	 	┼	-	-	 	┼─		╁
Chromium	10	17.50	J	19.00	J		\vdash				\vdash		 	<u> </u>	╁─		+	 	╁		╁
Cobalt	50	7.70		7.10		<u> </u>			1				┼─				┪	 	╂╾		┼─
Copper	25	18.40		15.80					1				 	 	1		╁	ļ	\vdash		┢╾
Iron	100	14700		12600					1				\vdash		 		 -	 	┼		┢
Lead	3	4.00		3.30							 		 	 	 		t		╫╌		┢
Magnesium	5000	4720	J	4530	J								1-		├──		┼─	 	├		├─
Manganese	15	246.00	J	212.00	J				 	İ	 		1	 			├-	l	╫		
Mercury	0.2	0.09	حا	0.09	U		·		 					 	-		1		 		\vdash
Nickel	40	19.20	J	24.40	J						T				 		· 	<u> </u>	 		
Potassium	5000	916.00	J	749.00	J					 			一		\vdash		-		-		-
Selenium	5	3.90	UJ	4.00	U					·	 		1	 	一		\vdash	 	 	·	\vdash
Silver	10	0.39	U	0.39	U		i		 	 			 	<u> </u>					 		
Sodium	5000	229.00		193.00					 	<u> </u>		-			\vdash		\vdash				<u> </u>
Thallium	10	0.79	U	0.79			\vdash			<u> </u>			1	<u> </u>			 				-
Vanadium	50	34.60		30.40									 	<u> </u>	 	·············	 				
Zinc	20	35.70		30.90									 				+	 	 		
Cyanide	10	0.52	U	0.50	U												 				\vdash
													_				 				
															-		 		-		\vdash
															-		\vdash				
															-				-		<u> </u>
									_										\vdash		

BLANK AND SAMPLE DATA SUMMARY

							7467 4 6	
REVIEWER: LM			DAT	E: 10/27/	92		PAGE_1_O	F <u>1</u>
								,
COMPOUND	RESULT	Q	RT	UNITS	5X RESULT	10X RESULT	SAMPLES AFFECTED	QUALIFIER
Antimony	11.1			ug/L	55.5	111.0	B05WW6, B05WW7	U
Arsenic	2.5			ug/L	12.5	25.0	B05WW6, B05WW7	U
Beryllium	1.8			ug/L	9.0	18.0	B05WW6, B05WW7	U
Cadmium	1.4			ug/L	7.0	14.0	B05WW6, B05WW7	U
Silver	2.2			ug/L	11.0	22.0	B05WW6, B05WW7	U
								· Via
					:			-
								:
	COMPOUND Antimony Arsenic Beryllium Cadmium	Antimony 11.1 Arsenic 2.5 Beryllium 1.8 Cadmium 1.4	COMPOUND RESULT Q Antimony 11.1 Arsenic 2.5 Beryllium 1.8 Cadmium 1.4	COMPOUND RESULT Q RT Antimony 11.1 Arsenic 2.5 Beryllium 1.8 Cadmium 1.4	COMPOUND RESULT Q RT UNITS Antimony 11.1 ug/L Arsenic 2.5 ug/L Beryllium 1.8 ug/L Cadmium 1.4 ug/L	COMPOUND RESULT Q RT UNITS 5X RESULT Antimony 11.1 ug/L 55.5 Arsenic 2.5 ug/L 12.5 Beryllium 1.8 ug/L 9.0 Cadmium 1.4 ug/L 7.0	COMPOUND RESULT Q RT UNITS 5X RESULT 10X RESULT Antimony 11.1 ug/L 55.5 111.0 Arsenic 2.5 ug/L 12.5 25.0 Beryllium 1.8 ug/L 9.0 18.0 Cadmium 1.4 ug/L 7.0 14.0	COMPOUND RESULT Q RT UNITS 5X RESULT 10X RESULT SAMPLES AFFECTED Antimony 11.1 ug/L 55.5 111.0 B05WW6, B05WW7 Arsenic 2.5 ug/L 12.5 25.0 B05WW6, B05WW7 Beryllium 1.8 ug/L 9.0 18.0 B05WW6, B05WW7 Cadmium 1.4 ug/L 7.0 14.0 B05WW6, B05WW7

WHC-SD-EN-TI-082, Rev.

5-36

Matrix spike recovery

C-SD-EN-TI-082, Rev.

ACCURACY DATA SUMMARY

CDC. DOCUME				
SDG: B05WW6	REVIEWER: LM	DATE: 10/27/92	PAG	E_1_OF_1_
COMMENTS:				
SAMPLE ID	COMPOUND	% RECOVERY	SAMPLE(S) AFFECTED	QUALIFIER REQUIRED
B05WW7S	Antimony	49.5	All	J

	٠		•	

5-3

PRECISION DATA SUMMARY

	DATE: 10/27/92			PAGE <u>1</u> OF	1_
E ID:	SAMDIE ID:	PPD	CAMPLES	AFFECTED	OTIAL IEIED

SDG: B05WW6 REVIEWER:	SC	DATE: 10/27/92		PAGE 1_OF	1_
COMMENTS:					
COMPOUND	SAMPLE ID:	SAMPLE ID:	RPD	SAMPLES AFFECTED	QUALIFIER
Calcium	B05WW7	B05WW7D	30.7	B05WW6,B05WW7	J
Chromium	B05WW7	B05WW7D	89.5	B05WW6,B05WW7	l
Magnesium	B05WW7	B05WW7D	34.8	B05WW6,B05WW7	J
Manganese	B05WW7	B05WW7D	21.9	B05WW6,B05WW7	J
Nickel	B05WW7	B05WW7D	45.0	B05WW6,B05WW7	J
Barium	B05WW6	B05WW7	23.3	B05WW6,B05WW7	J
Potassium	B05WW6	B05WW7	23.8	B05WW6,B05WW7	J
<u> </u>					

WHC-SD-EN-TI-082, Rev. 0

DATA QUALIFICATION SUMMARY

and positive		D. 400	24024024				
SDG: B05WW6	REVIEWER: LM	DATE: 10/27/92	PAGE_1_OF_1_				
COMMENTS:							
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON				
Antimony	υ	B05WW6,B05WW7	Lab blank contamination				
Arsenic	U	B05WW6,B05WW7	Lab blank contamination				
Beryllium	U	B05WW6,B05WW7	Lab blank contamination				
Cadmium	U	B05WW6,B05WW7	Lab blank contamination				
Silver	U	B05WW6,B05WW7	Lab blank contamination				
Calcium	J	B05WW6,B05WW7	Duplicate RPD				
Chromium	J	B05WW6,B05WW7 Duplicate RPD					
Magnesium	J	B05WW6,B05WW7	Duplicate RPD				
Manganese	J	B05WW6,B05WW7	05WW7 Duplicate RPD				
Nickel	J	B05WW6,B05WW7	Duplicate RPD				
Selenium	J	B05WW6	MSA corr. < 0.995				
Barium	J	B05WW6,B05WW7	Field Duplicate RPD out				
Potassium	J	B05WW6,B05WW7	Field Duplicate RPD out				
							

WHC-SD-EN-TI-082, Rev. 0

WEL	SAMPLE LOCATION INFORMATION			
SAMPLE LOCATION	SAMPLE NUMBER	MATRIX	DATE SAMPLED	RADIOCHEMISTRY
116-H-9	B05WN8 B05WN9 B05WP0	s s s	2/26/92 2/27/92 2/27/92	12-3 12-3 12-3
116-H-3	B05WP1 B05WP5 B05WP7	s s w	3/04/92 3/05/92 3/05/92	12-3 12-3 12-5
116 - H-7	B05WT8 B05WT9 B05WV1 B05WV2 B05WV3 B05WV4	S S W S S S	2/27/92 2/28/92 2/28/92 3/02/92 3/02/92 3/02/92	12-3 12-3 12-5 12-3 12-3 12-3
116 - H-1	B05WV5 B05WV6 B05WV7 B05WV8 B05WV9 B05WW0 B05WW4	S S S S S S S	3/09/92 3/09/92 3/09/92 3/09/92 3/10/92 3/10/92 3/11/92	12-4 12-4 12-6 12-4 12-4 12-4 12-4
116-H-2	B05WW5 B05WW6 B05WW7	s s s	3/13/92 3/16/92 3/16/92	12-4 12-6 12-6

(N)

6.0 GROSS ALPHA AND GROSS BETA DETERMINATION DATA VALIDATION

6.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

BO5WN8 BO5WV7

6.2 HOLDING TIMES

(

. ^

1

2.7

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for this analysis is six months.

All holding times were acceptable.

6.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the gas proportional counter used for gross alpha and gross beta determination is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturer's recommendations and consists of an instrument efficiency determination as a function of alpha or beta particle energy, and as a function of the mass of material submitted for counting. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All gross alpha sample results in both data packages were rejected and flagged "R" because efficiencies were below the QC minimum of 20%.

All gross beta sample results in SDG No. B05WV7 were rejected and flagged "R" because the associated efficiencies were below the QC minimum of 20%.

All other gross beta results were acceptable.

6.4 ACCURACY

Accuracy was evaluated by analyzing soil or distilled water samples spiked with known amounts of alpha or beta emitting

radionuclides. The sample activity as determined by sample analysis is compared to the known activity to assess accuracy. Acceptable accuracy of spiked sample data must fall within a range of 80 to 120 percent. If spiked sample results were outside this range, the associated data was qualified as estimated (J/UJ).

All gross alpha sample results in SDG No. B05WV7 were rejected and flagged "R" since the associated laboratory control sample recoveries (matrix spike results) were out of specification.

All gross beta results in all samples except B05WV1 in SDG No. B05WN8 have been qualified as estimated (J) since associated LCS recoveries were out of specification.

All other accuracy results were acceptable.

6.5 PRECISION

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Replicates with activities greater than five times the LLD and with an RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

All precision results are acceptable.

6.6 BLANK SAMPLES

1

1

Blank samples are analyzed to determine if positive results are due to laboratory reagent, sample container, or detector contamination.

All results are acceptable, including those for field and equipment blanks.

6.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS

Compound quantitation and detection limits were recalculated for all samples in each data package to verify their accuracy.

All compound quantitation and reported detection limits for all samples are acceptable.

6.8 OVERALL ASSESSMENT AND SUMMARY

 A review of instrument continuing calibration information and QC data indicates that instrument performance was inadequate for these analyses. As noted in the previous sections, all gross alpha data in each data package were rejected (R) because efficiencies determined in calibration were less than the QC minimum of 20%. Rejected data are unusable for all purposes. The gross beta results in several samples in SDG No. B05WN8 were qualified as estimates and flagged since the associated LCS recoveries were out of specification "J". All other QC results were acceptable and usable for all purposes.

THE PART OF EVELOUAL CO

THIS PAGE INTENTIONALLY LEFT BLANK

7.0 ALPHA SPECTROSCOPY DATA VALIDATION

7.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B05WN8 B05WV7

7.2 HOLDING TIMES

\!

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for this analysis is six months.

Holding times were acceptable for all samples.

7.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the alpha spectroscopy system used is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturer's recommendations and consists of an instrument efficiency determination for each alpha radionuclide region of interest and system resolution as measured by the full-width at half maximum for each peak. Initial calibration was performed for each counting geometry used during the analysis of Westinghouse Hanford samples. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All calibration data were acceptable.

7.4 ACCURACY

Accuracy was evaluated by analyzing soil or distilled water samples spiked with known amounts of alpha emitting radionuclides. The sample activity as determined by sample analysis is compared to the known activity to assess accuracy. The acceptable matrix spike or Laboratory Control Sample recovery range is 80 to 120 percent, while that for radiometric yields is 30 to 105%. Spike sample results outside the above ranges resulted in qualification of the associated data as estimated (J/UJ).

- All alpha spectroscopy results in SDG No. B05WV7 were rejected and flagged "R" since the associated radiometric yields were below the QC minimum.
- All Uranium-238, Isotopic Plutonium, and Americium-241 sample results, except for sample numbers B05WP7 and B05WV1 in SDG No. B05WN8, have been qualified as estimated (J) since the associated LCS recoveries were out of specification.
- All Uranium-235 sample results, except sample numbers B05WP7 and B05WV1 in SDG No. B05WV8, have been rejected and flagged "R" because the associated LCS recoveries were grossly out of specification.

All other accuracy results were acceptable.

7.5 PRECISION

13

1

10

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate samples. Replicates with a RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

Since the associated RPD was greater than 35%, all Uranium-238 results in SDG No. B05WN8 were qualified as estimated (J).

All other precision results were acceptable.

7.6 BLANK SAMPLES

Blank samples are analyzed to determine if positive results are due to laboratory reagent, sample container, or detector contamination.

All blank results were acceptable. Equipment blanks showed minimal to negligible contamination.

7.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS

Compound quantitations and detection limits were recalculated for all samples in each data delivery package to verify their accuracy. Results below the MDA were qualified as non-detects (U) except in cases where the MDA was greater than the contract required detection limit. In the latter situation, non-detects were qualified as estimated (UJ).

All compound quantitation and reported detection limits are acceptable.

7.8 OVERALL ASSESSMENT AND SUMMARY

A complete review of all available QC and calibration data indicates that overall system performance is adequate. All Uranium-238 results in sample number B05WN8 were estimated due to high RPD values. The results for Americium-241, Plutonium, and Uranium were affected by poor accuracy in SDG No. B05WV7. Associated results were rejected and flagged "R". Plutonium, Uranium-238, and Americium results were qualified as estimated in SDG No. B05WN8 because the associated LCS recoveries were out of specification. Data qualified as estimated is valid and usable for limited purposes only. Uranium-235 sample results in SDG No. B05WV8 were rejected and flagged "R" because the associated LCS recoveries were out of specification. Rejected results are unusable for all purposes. All other QC and calibration data is acceptable and associated sample results were usable for all purposes.

THIS PAGE INTENTIONALLY LEFT BLANK

8.0 GAMMA SPECTROSCOPY DATA VALIDATION

8.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

BOSWN8 BOSWV7

8.2 HOLDING TIMES

In

1

5

5

1

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for this analysis is six months.

Holding times were acceptable.

8.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the gamma spectroscopy system used is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturers recommendations and consists of an instrument efficiency determination for each gamma radionuclide region of interest, system resolution, as measured by the full-width at half maximum for each peak. Initial calibration was performed for each counting geometry used during the analysis of Westinghouse Hanford samples. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

Associated calibration data for all gamma spectroscopy results are acceptable.

8.4 ACCURACY

Accuracy was evaluated by analyzing soil or distilled water samples spiked with known amounts of gamma emitting radionuclides. The sample activity as determined by sample analysis is compared to the known activity to assess accuracy. The acceptable spiked recovery range is 80 to 120 percent. If spiked sample results were outside this range the associated data was qualified as estimated (J/UJ).

WHC-SD-EN-TI-082, Rev. 0

All gamma spectroscopy results, except for results associated with sample numbers B05WP7 and B05WV1 in SDG No. B05WN8 were qualified as estimated (J) since the associated LCS recoveries were out of specification.

All other accuracy results were acceptable.

8.5 PRECISION

1

-741

10

17

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Replicates with a RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

All precision results were acceptable.

8.6 BLANK SAMPLES

Blank samples are analyzed to determine if positive results may be due to laboratory reagent, sample container, or detector contamination.

No blank data was provided for any of the samples in SDG No. B05WV7; therefore, all associated results were qualified as estimated (J).

All other blank sample results were acceptable, including those for equipment blanks.

8.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS


Compound quantitations and detection limits were recalculated for all samples in each data delivery package to verify their accuracy. Results below the MDA were qualified as non-detects (U) except in cases where the MDA was greater than the contract required detection limit. In these situations, non-detects were qualified as estimated (UJ).

All compound quantitation and detection limits and results are reported properly.

8.8 OVERALL ASSESSMENT AND SUMMARY

a. Car

in The A review of continuing calibration and QC data indicates that instrument performance was adequate for these analyses. With the exception of the missing blank data in SDG No. B05WV7, all system performance results are acceptable. All results associated with this data packages were flagged as estimates ("J" or "UJ"). In addition, several samples in SDG No. B05WN8 were qualified as estimated since the associated LCS results were out of specification. Data qualified as estimated (J/UJ) is valid and usable for limited purposes only. All other data is considered to be valid within the detection limits and standard errors associated with the method and usable for limited purposes only.

THIS PAGE INTENTIONALLY LEFT BLANK

9.0 STRONTIUM-90 DETERMINATION DATA VALIDATION

9.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

BO5WN8 BO5WV7

9.2 HOLDING TIMES

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for this analysis is six months.

All holding times were acceptable.

9.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the low background counting system used for Strontium-90 determination is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturer's recommendations and consists of an instrument detection efficiency determination. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All calibration results were acceptable.

9.4 ACCURACY

my.

7.-">

All spike recoveries should be within the specified QC range of 80 to 120 percent, while all radiotraced samples should show a radiometric yield or recovery between 30 and 105%. Spiked sample results outside the above ranges resulted in qualification of the associated data as estimated.

All Strontium-90 results, except for results associated with sample numbers B05WP7 and B05WV1 in SDG No. B05WN8 were qualified as estimated (J) since the associated LCS recoveries were out of specification.

All other accuracy results were acceptable.

9.5 PRECISION

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Replicates with an RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

All precision results were acceptable.

9.6 BLANK SAMPLES

-

12.0

the the

1

Blank samples are analyzed to determine if positive results may be due to laboratory reagent, sample container, or detector contamination.

All blank results were acceptable.

9.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS

Compound quantitation and detection limits were recalculated for all samples in each data delivery package to verify their accuracy. Results below the MDA were qualified as non-detects (U) except in cases where the MDA is greater than the contract required detection limit. In these situations, non-detects were qualified as estimated (UJ).

All compound quantitation and reported detection limits and sample results have been properly reported and transcribed.

9.8 OVERALL ASSESSMENT AND SUMMARY

A review of instrument continuing calibration information and QC data indicates that instrument performance was adequate for these analyses. With the exception of minor LCS deficiencies in SDG No. B05WN8, overall system performance was adequate. In cases where the sample results were affected by the above accuracy problem, the associated data were qualified as estimated. Data qualified in this manner are valid and usable for limited purposes only. All other results are usable for all purposes.

10.0 TECHNETIUM-99 DATA VALIDATION

10.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

BOSWN8 BOSWV7

10.2 HOLDING TIMES

Holding times are calculated from Chain of Custody forms to determine the validity of the results. The maximum holding time for this analysis is six months.

All holding times were acceptable.

10.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the low level beta counting system used is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturers recommendations and consists of an instrument efficiency determination and a self-absorption curve for the radionuclide of interest. In addition, the detection method employs a National Technical Information System (NTIS) traceable Technetium-99m internal reference standard. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All calibration results were acceptable.

10.4 ACCURACY

Accuracy was evaluated by analyzing soil or distilled water samples spiked with known amounts of Technetium-99, a gamma emitting radionuclide. The sample activity as determined by sample analysis is compared to the known activity to assess accuracy. Acceptable accuracy of spiked sample data must fall within a range of 80 to 120 percent, while radiotraced yields and recoveries must fall between 30 and 105%. Spike sample results outside the above ranges resulted in qualification of the associated data as estimated (J/UJ).

All Technetium-99 results, except for results associated sample numbers B05WP7 and B05WV1 in SDG No. B05WN8, were qualified as estimated (J) since the associated LCS recoveries were out of specification.

Accuracy results for all other samples were acceptable.

10.5 PRECISION

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Replicates with a RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

All precision results in all of the data packages were acceptable.

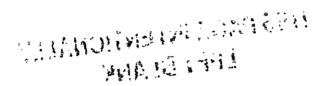
10.6 BLANK SAMPLES

Blank samples are analyzed to determine if positive results may be due to laboratory reagent, sample container, or detector contamination.

All blank results were acceptable. Equipment blanks showed minimal to negligible contamination.

10.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS

Compound quantitations and detection limits were recalculated for all samples in each data delivery package to verify their accuracy. Results below the MDA were qualified as non-detects (U) except in cases where the MDA was greater than the contract required detection limit. In these cases, non-detects were qualified as estimated (UJ).


All compound quantitation and reported detection limits have been properly calculated and reported for the sample analyses at hand.

10.8 OVERALL ASSESSMENT AND SUMMARY

A review of instrument continuing calibration information and QC data indicates that instrument performance was adequate

WHC-SD-EN-TI-082, Rev. 0

for these analyses. Technetium-99 results in SDG No. B05WN8 were qualified as estimated due to problems with LCS recoveries. Data qualified in this manner is valid and usable for limited purposes only. All other data is valid and usable for all purposes.

₹\!

FN

1 >

0

THIS PAGE INTENTIONALLY LEFT BLANK

11.0 CARBON-14 DETERMINATION DATA VALIDATION

11.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B05WN8 B05WV7

11.2 HOLDING TIMES

Holding times for Carbon-14 liquid scintillation analyses were assessed to ascertain whether the holding time requirements were met by the laboratory. Samples must be analyzed within six months of collection.

All holding times were acceptable.

11.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the low background liquid scintillation counting system used for Carbon-14 determination is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturer's recommendations and consists of an instrument efficiency determination for the radionuclide at hand. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All calibration results were acceptable.

11.4 ACCURACY

**)

All spike recoveries should be within the specified QC range of 80 to 120 percent, while all radiometric yields should fall within the range of 30 to 105%. Spiked sample results outside the above ranges resulted in qualification of the associated data as estimated (J/UJ).

 All Carbon-14 results, except for results associated with sample numbers B05WP7 and B05WV1 in SDG No. B05WN8, were qualified as estimated (J) since the associated LCS recoveries were out of specification. Radiochemical yields were out of specification for samples in SDG No. B05WV7. All associated results were qualified as estimated (J).

All other accuracy results were acceptable.

11.5 PRECISION

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Replicates with a RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

All Carbon-14 results in SDG No. B05WN8 were qualified as estimated (J) since the associated RPD was out of specification.

All other precision results were acceptable.

11.6 BLANK SAMPLES

7

(v)

Blank samples are analyzed to determine if positive results may be due to laboratory reagent, sample container, or detector contamination.

All blank results are acceptable. Equipment blank results showed minimal to negligible contamination.

11.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS

Compound quantitation and detection limits were recalculated for all samples in each data delivery package to verify their accuracy. Results below the MDA were qualified as non-detects (U) except in cases where the MDA was greater than the contract required detection limit. In these situations, non-detects were qualified as estimated (UJ).

All compound quantitation and reported detection limits and sample results have been properly reported and transcribed.

11.8 OVERALL ASSESSMENT AND SUMMARY

A review of instrument performance and calibration reveals that the overall system performance is adequate. Due to minor

LCS deficiencies, several samples in SDG No. B05WN8 were qualified as estimated and flagged "J". Radiochemical yields were outside of QC limits for all samples in SDG No. B05WV7. The associated results were qualified as estimates (J). C-14 results in SDG No. B05WN8 were qualified as estimates and flagged "J" since the associated RPD recovery exceeded QC limits. All other QC and calibration results were acceptable and usable for all purposes.

((1)

1

 $\mathbf{y}^{\nu} = \mathbf{y}$

20

13

THE PACE INTENTIONALLY

12.0 TRITIUM DETERMINATION DATA VALIDATION

12.1 DATA PACKAGE COMPLETENESS

The following data package (SDG No.) was submitted:
B05WN8

The data package was found to be complete.

12.2 HOLDING TIMES

1.42

s_2"\$

2

17.

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for this analysis is six months.

All holding times were acceptable.

12.3 INSTRUMENT CALIBRATION AND PERFORMANCE

Instrument calibration is performed to establish that the low background liquid scintillation counting system used for tritium determination is capable of producing acceptable and reliable analytical data. The initial calibration was performed according to manufacturer's recommendations and consists of an instrument efficiency determination, and background tritium measurements for uncontaminated water. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All instrument performance and calibration data were acceptable.

12.4 ACCURACY

All spike recoveries should be within the specified QC range of 80 to 120 percent, while all radiometric yields should fall within the range of 30 to 105%. Spiked sample results outside the above ranges resulted in qualification of the associated data as estimated (J/UJ).

All accuracy results were acceptable.

WHC-SD-EN-TI-082, Rev. 0

12.5 PRECISION

Analytical precision is expressed by the RPD between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Replicates with a RPD less than 35 percent are acceptable. If duplicate activities are both <5xLLD, a control limit of 2xLLD is used. If replicate values are both below the LLD, no control limit is applicable. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects (J) or estimated non-detects (UJ).

All precision results were acceptable.

12.6 BLANK SAMPLES

15

Blank samples are analyzed to determine if positive results may be due to laboratory reagent, sample container, or detector contamination.

All blank data results were acceptable. Equipment blank results showed minimal to negligible contamination.

12.7 COMPOUND QUANTITATION AND REPORTED DETECTION LIMITS

Compound quantitation and detection limits were recalculated for all samples in each data delivery package to verify their accuracy. Results below the MDA were qualified as non-detects (U) except in cases where the MDA was greater than the contract required detection limit. In these situations, non-detects were qualified as estimated (UJ).

All compound quantitation and reported detection limits and sample results have been properly reported and transcribed.

12.8 OVERALL ASSESSMENT AND SUMMARY

A review of all calibration and QC data reveals that system performance was adequate for the analysis of tritium. System performance in all data packages was acceptable, and the associated sample data are usable for all purposes.

_
5 7:
H
_
\sim
ťΩ
•
U
$\mathbf{\circ}$
1
H
1-3
EN
4
1
H
Ė
_
•
÷
ò
_
280
N
•
7
XeV
ന
10
_
~
•
•
_
c
•

Project: WESTINGHOUSE-F	IANFOR	D]																	
Laboratory: TMA																				
Case SDG	: B05W	18																		
Sample Number	B05WN	3	B05WN	9	B05WP0)	B052P1		B052P5		B05WT8	}	B05WT9	}	B05WV2	5	B05WV3	3	B05WV4	+
Location .	116-H-	9	116-H-	9	116-H-	9	116-H-	3	116-H-3	3	116-H-	7	116-H-	7	116-H-	7	116-H-	7	116-H-7	7
Remarks																				
Analysis Date	7-30-92	2	7-30-92	?	7-30-92		7-30-92	?	7-30-92	?	7-30-92	?	7-30-92	2	7-30-92	2	7-30-92	?	8-04-92	?
Analytes		Q					Result	Q		Q		Q	I	Q		Q				Q
Gross Alpha	4.9		3.2	_	3.6		30	R	-1.7	R		R	4.7		5.8	R	4.9	R	3.2	R
Gross Beta	15	J	. 9.7	J	12	J	15	J	14	J		J	110	J	160	J	. 22	J	19	J
Uranium 233/234	N/A		N/A	<u> </u>	N/A	<u> </u>	N/A		N/A	<u> </u>	N/A		N/A		N/A	<u> </u>	N/A	<u> </u>	N/A	
Uranium 235		R		R	0.015		0.016	I		R		R	0.013	1		R	0.018		0.014	R
Uranium 238		J		J	0.45		0.58	J	0.44	UJ		J	0.47	J	0.68	J	0.5	J	0.53	J
Plutonium 239/240		UJ		IJ		UJ	0.006	IJ	0	IJ	0.026	J	1.1	J	1.3	J		J		UJ
Americium 241	0.023	UJ		IJ		บป	0.009	IJ	0.011	บป		Π'n	0.54	J	0.72	J		UJ		UJ
Strontium 90	0.085	UJ		IJ		UJ	0.048	Πĵ	0.24	UJ	-0.15	IJ	3.2	J	0.93	J		บป	1.2	J
Technetium-99	-0.13	UJ	'0.23	UJ		เก	0.52	UJ	0.2	IJ	0.15	IJ	0.33	บป	0.095	IJ	0.26	IJ		UJ
Carbon 14		UJ		UJ	-9.3	บป	3.5	UJ	1.8	υJ		IJ	33	J	28	J	-8.1	บม	34	J
Potassium 40	15	J		IJ	11	J	9.8	J	8.8	J	7.2	J	19	J	33	J		IJ	11	J
Chromium 51	N/D	UJ	N/D	เกา		ÛĴ	N/D	IJ	N/D	บป	N/D	บป	N/D	บป	N/D	UJ		UJ		UJ
Cobalt 60	N/D	IJ	N/D	UJ	N/D	บม	0.38	J	0.13	J	N/D	UJ	14	J		J	1	J		υJ
Zinc 65	N/D	บป	N/D	UJ		บม	N/D	บป	N/D	IJ	N/D	IJ	N/D	บม		บป	1	UJ		เกา
Cesium 134		เกา	.	UJ		เกา		บป	N/D	UJ	N/D	IJ		เกา		υJ		UJ		IJ
Cesium 137		IJ	0.29	J		UJ	N/D	UJ	N/D	IJ	N/D	IJ	11	J	35	J	1.7			UJ
Radium 226	0.64	J	0.71	J	0.5	J	N/D	IJ		บป	0.29	J		UJ	N/D	ี่	0.65	J	0.44	J
Thorium 228		J	1.1	J	0.73		0.58	J	0.45	J	0.41	J	N/D	UJ	N/D	IJ		J	0.46	J
Thorium 232	0.75	J		J	0.39		0.44	J	0.57	J	0.41	J	N/D	UJ	N/D	UJ	N/D	IJ	0.44	J
Europium 152		UJ		J		2	0.54	J		J		IJ	120	J	260	J	<u> </u>	J		UJ
Europium 154	N/D	IJ	N/D	IJ	N/D	ÛΊ	N/D	3	N/D	S	N/D	IJ		J	37	J	0.5	J	N/D	บป
Zirconium 95	N/D	IJ	N/D	บป	N/D	IJ	N/D	IJ	N/D	υJ	0.56	UJ	N/D	UJ	N/D	บม	N/D	เกา	N/D	IJ

E
ヸ
2
Ĭ
ū
?
4
SDEN
7
ia.
H
1
I-082,
ထ
N
•
~
Rev.
•
0

Project: WESTINGHOUS	E-HANFOR	D	}																	
Laboratory: TMA			1																	
Case	SDG: B05W	N8	1																	
Sample Number	B05WV	5	B05WV6	3	B05WV	3	B05WV9)	B05WW	0	B05WW	4	B05WW	5	B05WW	6	B05WW	7		
Location	116-H-	1	116-H-	1	116-H-	1	116-H-	1	116-H-	1	116-H-	ī	116-H-	2	116-H-	2	116-H-	2		
Remarks											Ţ									$\neg \neg$
Analysis Date	7-30-9	2	7-30-92	!	7-30-92	?	7-30-92	!	7-30-92		7-30-92		7-30-92	2	7-30-92	?	7-30-92			
Analytes	Result	Q		Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Gross Alpha	-1.3	R	4.9	R	6.4	R	0.86	R	2.7	R	2.7	R	3	R	1.7	R	3.2	R		
Gross Beta	110	J	95	J	92	j	69	J	16	J	-2.4	J	12	J	16	J	.14	J		
Uranium 233/234	N/A		0	R	0.53	R	0.62	R	N/A		N/A		N/A		N/A		N/A			\Box
Uranium 235	0.031	R		R	0.025	R	0.13	R	0.05	R	0.043	R ·	0	R	0	R	0	n	,	
Uranium 238	0.61	J		UJ	0.31	UJ	0.23	J	0.39	J	0.58	J	0.33	J	0.54	J	0.5	J_		\Box
Plutonium 239/240	0.74	J	0.58	J	0.64	IJ	0.33	J	0.063	J	0.034	J	0	IJ	0	IJ	0.006	บา		\sqcap
Americium 241	0.2	J	0.16	J	0.16	IJ	0.068	J	0	IJ	0.006	UJ	0.004	UJ	0.002	W	-0.033	UJ		
Strontium 90	1.5	J	1.5	3	6.2	IJ	5.5	J	1.3	J	-0.081	IJ	-0.02	UJ	-0.76	IJ	-0.24	UJ		
Technetium-99	0.25	UJ	0.25	5	0.18	J	0.67	J	0.21	IJ	-0.76	UJ	0.14	เกา	0.084	เก	0.42	W		\Box
Carbon 14	2.3	UJ	3.4	UJ	8.9	IJ	-0.48	υJ	15	J	0.28	IJ	4.2	UJ	-0.21	IJ	0.91	UJ		\sqcap
Potassium 40	13	J	9.9	J	13	J	13	J	10	J	13	J	8.9	J	12	J	13	J		
Chromium 51	N/D	UJ	N/D	IJ	N/D	W	N/D	IJ	N/D	UJ	N/D	UJ	N/D	บป	N/D	เม	N/D	บัง		
Cobalt 60	2.5	J	1.8	7	2.2	j	2	5	N/D	บบ	N/D	IJ	N/D	UJ	N/D	IJ	N/D	บป		\sqcap
Zinc 65	N/D	UJ	N/D	IJ	N/D	S	N/D	บป	N/D	IJ	N/D	UJ	N/D	UJ	N/D	ÛΊ	N/D	UJ		\Box
Cesium 134	N/D	UJ	N/D	IJ	N/D	IJ	N/D	IJ	N/D	IJ	N/D	บป	N/D	UJ	N/D	IJ	N/D	IJ		
Cesium 137	32	J	24	-	23	7	11	7	0.25	J	N/D	UJ	N/D	UJ	N/D	IJ	N/D	UJ		\sqcap
Radium 226	N/D	IJ	N/D	IJ	0.78	J	0.85	J	0.55	J	0.4	J	0.37	J	0.47	J	0.5	J		
Thorium 228	N/D	IJ	0.95	J	0.52	J	0.44	J	0.75	J	0.4	J	0.49	J	0.5	j	0.63	J		-
Thorium 232	N/D	UJ	N/D	IJ	N/D	IJ	N/D	IJ	0.89	J	0.4	7	0.35	J	N/D	บป	N/D	เม		П
Europium 152	54	3	36	J	34	J	42	J	0.72	J	N/D	IJ	N/D	UJ	N/D	UJ	N/D	IJ		П
Europium 154	5.4	J	3.6	J	3.6	j	3.6	J	0.34	J	N/D	IJ	N/D	IJ	N/D	UJ	N/D	UJ		\Box
Zirconium 95	N/D	IJ	N/D	บป	N/D	IJ	N/D	บม	N/D	IJ	N/D	υJ	N/D	ÜJ	N/D	บป	N/D	IJ		

12-

WHC-SD-EN-TI-082, Rev.

RADIOCHEMISTRY ANALYSIS, WATER MATRIX, (pCi/L+-2)

Page__1__ of__1__

Project: WESTINGHOU	USE-HANFOR	D	1																	
Laboratory: TMA			1																	
Case	SDG: B05W	N8	1																	
Sample Number	B05WP	7	B05WV1				I		<u> </u>		1			• • • •					i	\neg
Location	116-H-	3	116-H-7	7																
Remarks	EB		EB																i	
Analysis Date	7-30-9	2	7-30-92	!							 								··········	_
Analytes	Result	Q	Result		Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Gross Alpha	-0.24	R	0.095									Ī	1		T				i	
Gross Beta	-0.2	U	0.32														<u> </u>			\Box
Uranium 233/234	0.54		0.013																· · · · · · · · · · · · · · · · · · ·	\Box
Uranium 235	0.02		0.013																	\Box
Uranium 238	0.56	J		IJ								1				 				
Plutonium 239/240	0.008	U	-0.006																	\Box
Americium 241	0	U		IJ																
Strontium 90	-0.25			Ü														П		
Technetium-99	0.79		1.7																	П
Carbon 14		_		L																
Potassium 40	N/D	U	N/D					L					l						-	
Chromium 51	N/D	U		٦																
Cobalt 60	N/D	U		U																
Zinc 65	N/D	U	N/D		<u> </u>		}	<u> </u>												
Cesium 134	N/D	U		U																П
Cesium 137	N/D	U		٥								I								
Radium 226	N/D	U	N/D	Ü																П
Thorium 228	N/D	U	N/D	כ																П
Thorium 232	N/D	U		5																П
Europium 152	N/D	U	N/D	5																
Europium 154	N/D	U	N/D	S																
Zirconium 95	N/D	U	N/D	U																

XI.
ဂု
IS
ĭ
亨
Ŀ
Ţ
9
82
•
Re
Rev
• 1
0

Project: WESTINGHOUSE-H	IANFORI	<u></u>	Ì																	
Laboratory: Roy F. Weston																				
	: B05WV	77	ĺ																	
Sample Number	B05WV7	7							Ţ		T				T T	-			T	$\neg \neg$
Location	116-H-	ſ				_											 			
Remarks											1		l		 		-			\dashv
Analysis Date	3/9/92		<u> </u>														 	_		
Analytes	Result	Q	Result	Q	Result	O	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Gross Alpha	3.7	R											i					T		\vdash
Gross Beta	140	R	l	\Box		Π		T-					· · · · · · · · · · · · · · · · · · ·			\vdash				1
Sodium-22	1.78	J																1		\Box
Carbon-14	0.25	J						Ι	1									1	-	
Strontium 90	5	J				Γ.									 		· · · ·	\vdash		\vdash
Technetium-99	0.26	IJ		_		T														
Uranium-235	0.0016	R									·····							1		\vdash
Uranium-238	0.13	R											ļ ————————————————————————————————————				i			\Box
Plutonium-239/240	0.71	R						\top			1									
Americium-241	0.077	R			<u> </u>													1		$\vdash \vdash$
Potassium-40	1	J										_						1-		
Cobalt 60	2.53	J								Г	l ———			_		_		T		\vdash
Zinc 65	8.0	UJ						┞	-											\vdash
Cesium 134	0.2	IJ																1		
Cesium 137	36.4	J						\vdash						_						
Radium 226	3	IJ				_	-											\vdash		\vdash
Thorlum 228	0.3	IJ		_										-						\vdash
Thorium 234	3	ÜJ						1		1							· · · · · · · · · · · · · · · · · · ·	 		$\vdash \vdash$
Europium 152	51.4	J	-			1		Ι-						_		_		— —		1-1
Europium 154	4.9	J						_		 					 			-		\vdash
Europium 155	0.5	IJ				Ι-							- -					_		$\vdash \vdash$
Beryllium 7		UJ				_		 				_				_	ļ <u>.</u>	1		$\vdash \vdash \vdash$
Barium 140		IJ				_														\vdash
Manganese 54		IJ				_				<u> </u>						-		┢		
Cobalt 58		IJ										_				_		_		\vdash
Cerium 141		ŪĴ	_ 			<u> </u>				_	 					 -	 	1		+
Cerium 144		เก				T		-				 	<u> </u>	Η-			 	+		\vdash
Iron 59		UJ				_		 			 					-		1		
Zirconium 95		IJ								_	 							 		$\vdash \vdash$
Ruthenium 103		Ü				┢		-												\vdash
Ruthenium 106		IJ				_	<u> </u>	 												1
		IJ						├─		-	 					 				\vdash

12-

13.0 REFERENCES

EPA, 1987, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, Environmental Protection Agency, Washington, D.C.

1. 474

1

- EPA, 1988a, EPA Contract Laboratory Program Statement of Work for Organics Analyses, Multi-Media, Multi-Concentration, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1988b, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1988c, EPA Contract Laboratory Program Statement of Work for Inorganics Analyses, Multi-Media, Multi-Concentration, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1988d, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1990, EPA Contract Laboratory Program Statement of Work for Inorganic Analyses, Multi-media, Multi-Concentration, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1991, EPA Contract Laboratory Program Statement of Work for Organics Analyses, Multi-Media, Multi-Concentration, Environmental Protection Agency, Washington, D.C.
- WHC, 1992a, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, Westinghouse Hanford Company, April 1992.
- WHC, 1992b, Data Validation Procedure for Radiological Analyses, WHC-SD-EN-SPP-001, Westinghouse Hanford Company, 1992.

Date Received:	INFORMATI	ON RELEASE	REQUEST		Reference: WHC-CH-3-4
	Complete f	or all Types of	Release		
Purpose				de revision, volum	e, etc.)
[] Speech or Presentation	[] Reference		WHC-SD-EN-T	I-082, Rev. 0	
[] Full Paper (Check only one		al Report or Dissertation	List attachments	•	
[] Summary suffix)	[] Manual	i Dissortation		•	
Abstract	[] Brochun	e/Flier	Į .		
[] Visual Aid	1	o/Databaso	Date Release Rec	uired	······································
[] Speakers Bureau [] Poster Session		ed Document			
[] Videotape	[] Other		l te	bruary 24, 19	93
Title: Data Validation Reporture Unit Vadose Borehole	t for the 10	0-HR-1 Oper	able Unclassi	fied Category	Impact Level 3Q
New or novel (patentable) subject matter?	No [] Yes	Informatio	n received from others	n confidence, such as p	roprietary data,
If "Yes", has disclosure been submitted by WHC o			ets, and/or inventions?		
No Yes Disclosure No(s).		[X] No	Yes (identify)		
Copyrights? [X] No [] Yes		Trademari	r,		
if "Yes", has written permission been granted?		[X] No	Yes (identify)		
No Yes (Attach Permission)			•		
	Complete fo	r Speech or Pres			
Title of Conference or Meeting N/A		Group or	Society Sponsorin	ng	
	y/State		ll assaultings has autital	ed? [] Yes	[] No
N/A N//			ll proceedings be publis! Il material be handed ou	ři	ři No
Title of Journal	·	1 111	material bolianded ou	ti La 144	63
N/A					
	CHECKL	IST FOR SIGNATOR	IES		
Review Required per WHC-CM-3-4	es No R	<u>eviewer</u> - Signa:	ture Indicates App	roval	
		Name (print	<u>ed)</u>	<u>Signature</u>	<u>Date</u>
Classification/Unclassified Controlled Nuclear Information	[X]				
		Sulter	coul the	1110, -1.	1/22/02
L	Xi ii 🗲	JW BER	HUN 10-	Gliffen)	45/2
Applied Technology/Export Controlled	رز (x	<u> </u>			
Information or International Program	[] [X] <u> </u>				
WHC Program/Project	[X]	· · · ·			
Communications	[x]				
	[x] _				
I	xi [i 7	1 1/2		Hermann	1/22/92
•		L. Herma	nre S. I	Hermann-	423/13
Information conforms to all applicable	[X]	he shave inform	ation is certified	to be connect	
		7		INISTRATION APPROV	N STAMP
	<u>(es <u>No</u> []</u>			e is contingent upon res	
Transmit to DQE-HQ/Office of Scientific	۰ ۱۱ (۱۰	mandatory comm		500	
and Technical Information	[x] [x]		EC	TUN A	
Author/Requestor (Printed/Signature)	Dațe			FFICA, OF	
[Nin	10/00		9		
J. M. Ayres	7/11/3	1	Z .c	m m	
Intended Audience			4	183	
[] Internal [] Sponsor [X]	External		Con Con	2/24/	
Responsible Manager (Phinted/Signature)	Date				
R. P. Henckel /	2/19/93	Date Cancelle	d	Date Disapproved	

M